NetKernel: Network Stack as a Service in the Cloud -

Zhixiong Niu, Hong Xu, Dongsu Han*, Peng Wang, Libin Liu
NetX Lab, City University of Hong Kong; *KAIST
zx.niu@my.cityu.edu.hk, henry.xu@cityu.edu.hk, dongsuh @ee kaist.ac.kr, { pewang4-c,
libinliu-c } @my.cityu.edu.hk

1 Introduction

Multi-tenant data centers power many online applications
and services for billions of users, by allowing applica-
tions to run on virtual machines (VMs) with a wide vari-
ety of operating systems and configurations. Networking
plays a crucial role in delivering performance to VMs,
and our community has proposed many new solutions
at the end-host, including congestion control [2, 5], flow
scheduling [3], and load balancing [6].

Despite the progress, the architecture of the VM net-
work stack remains unchanged. Following traditional
operating systems design, the VM network stack is part
of the guest OS kernel and tightly coupled to it. Yet
this architecture proves to be inefficient in terms of per-
formance, and is increasingly becoming the barrier of
innovation. First, most new networking protocols or
services do not work with such an architecture, since
the operator does not have total control over the network
stack in the VMs. Second, solutions targeting multi-
tenant data centers usually have to go with a hypervisor
based implementation that does not involve modifying
the VM network stack [5, 6]. Packets then need to go
through additional processing and performance suffers.
This also stresses the already-burdened hypervisor.

In this paper, we propose NetKernel, a new architec-
tural design for VM network stack. NetKernel decou-
ples the VM network stack from the guest kernel, by
making it a customizable service whose implementation
is independent of the VM. The operator or other third-
parties can implement various transport protocols [2, 5],
stack optimization [7, 8], and end-host network functions
[4] as NetKernel modules for VMs to use. Essentially,
NetKernel offers network stack as a service in the cloud.

We identify three important use cases of NetKernel.
First, NetKernel gives tenants the flexibility to choose
a combination of network protocols to maximize the
performance according to their needs.

Second, NetKernel makes it easier for the operator to
develop and deploy novel network protocols and services,

*Zhixiong Niu, Peng Wang, and Libin Liu are student authors.

by simply packaging them as NetKernel modules for
VMs. The operator can optimize the stack for their hard-
ware and network fabric using e.g. FPGA and RDMA
without modifying the guest kernel.

Third, NetKernel also enables the operator to exert
centralized control over individual tenants and coordinate
their behavior globally, which is difficult to do with the
current design. For example, the operator can easily
adjust the flow priority thresholds in PIAS [3] by com-
municating to the NetKernel modules.

In addition, NetKernel can significantly reduce the
efforts for the tenants to deploy and maintain new pro-
tocols. For example, MPTCP is updated by distributing
source code and linux kernel packages. Developers
have to recompile or reinstall the kernel to update their
MPTCP VMs. Using NetKernel, MPTCP updates can
be distributed as an updated image. Thus we believe
NetKernel, and in general separating the network stack
from the guest OS, is a better architectural design in
multi-tenant data centers.

Note NetKernel differs from AC/DC [5] which still
follows the conventional VM network stack. NetKernel
also eliminates the overhead of TCP conversion at the hy-
pervisor in AC/DC. Besides, NetKernel aims to cover the
entire network stack instead of just transport protocols.

2 Design

Data
(Zero-copy)

— I E E

Packets

i
Hypervisor Network i | Hypervisor Network
i

(a). Existing design (b). NetKernel

Figure 1: NetKernel design compared to existing VM network stack.

We now present the initial design of NetKernel. Fig-
ure 1.(a) shows the existing design: the network stack is



located in the guest kernel, and packets are exchanged
between the guest kernel and hypervisor network. In
NetKernel, the applications in VMs are running on top
of both the kernel and NetKernel frontend as in Fig-
ure 1.(b). The kernel is responsible for providing services
as usual except for networking, which is taken care
of by NetKernel. NetKernel frontend uses the same
POSIX socket interface, so it is transparent to tenant
applications. All the requests to the network stack are
diverted by the NetKernel frontend and forwarded to the
NetKernel backend. The backend consists of various
Network Service Modules (NSMs), which are pre-built
images providing different network services.

To optimize efficiency, NetKernel frontend and back-
end share data in memory using zero-copy. NSM images
are configured and loaded to cater to application needs.
Note that, more than one services or protocols can be
built together as NSM. One can also employ multiple
NSMs as a chain to form a more complicated network
protocol stack as shown in Figure 1.(b). The NetKernel
backend is bridged to the hypervisor network to transmit
packets from/to the network.

NetKernel can also be deployed in a private cloud.
In this case the operator can globally deploy a unique
NetKernel network stack which is highly optimized for
its network fabric.

3 Implementation and Preliminary Results

We have implemented a prototype of NetKernel to verify
the feasibility of the idea. The prototype is implemented
in user space in C and Python. The NetKernel fron-
tend uses Linux command LD_PRELOAD to hijack the
networking API calls from glibc, including SOCKET (),

CONNECT (),RECV (), SEND (), SETSOCKOPT (), etc.

to the backend. The backend consists of a tiny controller
and various NSMs. The controller is written in Python to
manage the NSMs. For example, if an application needs
a particular service, the controller can load it instantly.
The NSMs are pre-built KVM VMs.!

The frontend and backend communicate using a ring
buffer based on [IVSHMEM provided by KVM. When
NetKernel frontend receives data from applications, it
puts the data into the shared ring buffer. Then the back-
end NSM handles the data and sends it using its cus-
tomized network stack.

Note that the current prototype is not optimized for
performance. We plan to improve the implementation in
many aspects, including a kernel space implementation,
kernel bypass technologies such as DPDK, and container
networking.

We performed a simple experiment to show the flexi-
bility of NetKernel by switching different transport pro-

The NSMs will be implemented by lightweight visualization
technology, such as container, in the future.

2.0

@

ey

S

5

Q

=y

[=)]

3

o

£

%= TCP

0.8 ®-@ MPTCP
0.6F ; ; : <4« NetKernel

1 2 3 4 5 6 7 8 9 10
Time (s)
Figure 2: NetKernel allows dynamic switching of transport protocols
on-the-fly. Legends: TCP and MPTCP show the throughput using
existing VM network stack with TCP-Cubic and MPTCP, respectively.
NetKernel shows throughput using the NetKernel prototype with a
TCP-NSM first and MPTCP-NSM after 5s.

tocols on-the-fly, which corresponds to the first use case
outlined in §1. Two NSMs are created with TCP Cubic
and MPTCP, respectively. The TCP-NSM uses Linux 4.1,
and MPTCP-NSM are based on Linux kernel MPTCP
v0.91 [1]. There are two servers. One is the hypervisor
running NetKernel. There are three VMs on this hyper-
visor: a sender, the TCP-NSM VM, and MPTCP-NSM
VM. The other server is the receiver. The two servers are
connected by two 1Gbps NICs.

Figure 2 depicts the result. Without NetKernel, the
sender VM uses either TCP or MPTCP in its kernel to
send data. Now with NetKernel, data is sent using NetK-
ernel NSMs. During 0s—5s, we use the TCP-NSM. At
Ss, NetKernel switches the transport protocol by loading
the MPTCP-NSM on-the-fly. Thus shortly after Ss, data
is sent using MPTCP with ~1.7Gbps throughput which
is very similar to the performance achieved by running
MPTCP inside the VM kernel. The application in the
sender VM never needs to restart.

4 References

[1] http://www.multipath-tcp.org.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP
(DCTCP). In Proc. ACM SIGCOMM, 2010.

[3] W.Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. PIAS:
Practical information-agnostic flow scheduling for data center
networks. In Proc. USENIX NSDI, 2015.

[4] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor,

T. Karagiannis, L. Koromilas, and G. O’Shea. Enabling End-host
Network Functions. In Proc. ACM SIGCOMM, 2015.

[5] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and

A. Akella. AC/DC TCP: Virtual Congestion Control Enforcement

for Datacenter Networks. In Proc. ACM SIGCOMM, 2016.

N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy, and J. Rexford.

CLOVE: How I Learned to Stop Worrying About the Core and

Love the Edge. In Proc. ACM HotNets, 2016.

X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi. Scalable

Kernel TCP Design and Implementation for Short-Lived

Connections. In Proc. SIGPLAN, 2016.

K. Yasukata, M. Honda, D. Santry, and L. Eggert. StackMap:

Low-Latency Networking with the OS Stack and Dedicated NICs.

In Proc. USENIX ATC, 2016.

[6

[t

[7

—

[8

[l


http://www.multipath-tcp.org

	Introduction
	Design
	Implementation and Preliminary Results
	References

