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ABSTRACT

Network function virtualization (NFV) enables dynamic scal-
ing of resources to middlebox deployment and management.
In NFV, state migration is an important task because opera-
tors often need to shift traffic and its associated flow states
across NF instances for load balancing. Existing state mi-
gration schemes, however, exhibit long delays and high con-
troller overhead.

This paper presents U-HAUL, an efficient state migration
system that reduces the state migration overhead. U-HAUL
takes advantage of the fact that most flows are short-lived
mice flows, and in many cases their processing states will ex-
pire before the state migration finishes. Rather than blindly
moving states of all the flows, U-HAUL keeps the states of
active mice flows on the original NF instance, and only mi-
grates elephant flow states. By reducing the number of flow
states to be migrated, U-HAUL greatly reduces the migration
delay and its performance penalty. Our evaluation shows that
U-HAUL reduces the average migration time by up to 87%
and the latency to mice flows by up to 94% compared to
OpenNF.

1 Introduction

Network function virtualization (NFV) [8] aims to replace
hardware middleboxes with virtual software instances run-
ning on commodity servers. Unlike layer 3 forwarding, many
middleboxes such as firewall, proxy, and VPN perform state-
ful packet processing. Operators usually need to dynamically
redistribute packet processing across multiple VNFs. Con-
sider a load balancing scenario where a firewall instance is
overloaded with traffic. An additional VNF then needs to be
spawned to adapt to the workload. The operator must not
only direct some traffic to the new instance, but also move
the internal flow states associated with the traffic. Without
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state migration, serious problems might arise—for example,
attacks may go undetected because the new VNF does not
have the necessary information. Thus, efficient state migra-
tion is an important and practical issue in NFV.

Frameworks such as Split/Merge [21] and OpenNF [10]
automatically transfer states across VNFs with or without
guarantees on packet loss, reordering, and state inconsis-
tency. Existing work, however, migrates states of all flows,
which takes hundreds of milliseconds to complete, generates
lots of overhead in the control plane, and degrades applica-
tion performance. We find that OpenNF [10] takes more than
100ms to move per-flow states for 1,000 flows, which signif-
icantly increases the flow completion time of mice flows. In
addition, moving all flows requires the controller to update
many entries in the routing tables, causing significant over-
head at both the controller and switches with limited flow
table size [7].

Modern networks contain many middleboxes that perform
variety of advanced network functions [13, 18, 19,25]. This
paper focuses on middleboxes deployed for flows within data
centers and intra-data center WAN. We show that in many
cases we do not have to move all the active flows and their
states. During state migration, their packets have to be
buffered at the controller in order to avoid packet loss or
reordering at the new instance. Yet, these mice flows are
highly likely to finish transmission long before the migra-
tion concludes and the controller releases them to the new
instance. For many NFs (e.g., IDS, packet filters) per-flow
states are no longer useful when the flow ends. Thus, an
intuitive idea is that we can just move the states for elephant
flows that are more likely to persist after the migration, and
keep mice flows at the original instance without any addi-
tional delay. By moving much fewer flows and states, one
can greatly reduce the controller overhead, migration delay,
and performance penalty to applications.

We present U-HAUL, an efficient NFV state migration
system that only moves elephant flow states whenever pos-
sible. U-HAUL relies on an underlying state management
framework such as OpenNF to provide basic state migra-
tion services. It adds three main components: a lightweight
elephant detection module (EDM), a new northbound API
call for applications to enable elephant-only migration, and
a filter API that allows the controller to obtain elephant flow
information from EDM.
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Given a definition of an elephant flow (e.g., size > 3MB),
the operator calculates the fraction of elephant traffic based
on its offline profiling and measurement, and uses it as the
target threshold value. The control application then initiates
elephant-only migration. The controller communicates with
the EDM using the filter API to detect elephant flows. Infor-
mation about the selected elephant flows is then sent to the
controller as OpenNF filters. These filters are then passed to
existing OpenNF methods for state migration. We conduct
testbed experiments on Emulab to evaluate U-HAUL using
realistic traffic distributions. Our preliminary results show
that compared to OpenNF, U-HAUL reduces the average mi-
gration time by up to 87%, the latency overhead to mice flows
by up to 94%, and the buffer usage at the controller by up to
60%.

2 Motivation

We first present our motivation to consider just moving states
for elephant flows in NFV state migration. Figure 1(a) shows
the flow size distribution in three production networks: a web
search cluster [5], a Facebook’s cache cluster [23], and the
Azure WAN [12]. The first two are data center networks and
the third is an inter-data center WAN. For all networks, ~60%
of the flows are less than 100 KB. For Facebook cache cluster
and Azure WAN, more than 90% of the flows are less than
1 MB. Mice flows are latency-sensitive and can finish within
tens to hundreds of microseconds in 40G or 10G networks.

Our observation is that state migration incurs downtime
on the order of O(100)ms [10, 17], which is significantly
larger than the flow completion time of mice flows. This is
because migrating states is a control-plane action where com-
plex mechanisms have to be in place to provide critical per-
formance guarantees such as loss-free and order-preserving
for NFV applications. To see this, we deploy OpenNF [10],
state-of-the-art state migration system on a five-node testbed
in Emulab as in Figure 1(b) (more details of the testbed in
§4.1). We use five physical machines instead of VMs for
maximum performance. We use two PRADS asset monitor
instances [3] (PRADS; and PRADS5) that are OpenNF-
enabled. Initially all traffic is sent to PRADS,. After it
has created per-flow states for 2,000 flows, we move half of
the flows and their states to PRADS5 for load balancing.
Figure 2(a) shows that even without any performance guar-
antees, OpenNF takes at least 268ms to transfer 1,000 states.
When applications demand loss-free and/or order-preserving
guarantees, the migration time is beyond 400ms even with
optimizations.

This motivates us to make a case for U-HAUL that moves
just the elephant flow states during NFV state migration.
We argue that one can simply leave active mice flows at
the original VNF PRADS, because they will finish the
transmission long before state migration ends. This does
not harm the working of many NFs, such as NATs, IDS,
and packet filters that only require per-flow states. We do
not focus on the consistency issues that arise when global
or multi-flow state is needed on the new NF instance, which
is addressed in some existing work [10]. U-HAUL only
migrates per-flow state.
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Figure 1: (a) Flow size distributions in a web search cluster [5], a
Facebook’s cache cluster [23], and Azure WAN [12]; (b) U-HAUL
Testbed Topology.
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Figure 2: (a) Migration time with no guarantees (NG), loss-free
(LF), and loss-free and order-preserving (LF+OP) with and with-
out parallelizing (PL) and early-release (ER) optimizations, using
flow size distribution of Figure 1(a); (b) Migration time when mov-
ing different numbers of flows with loss-free and order-preserving
guarantees, and parallelizing and early-release optimizations in
OpenNF.
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The benefits of moving just the elephant flow states is two-
fold. First, it significantly reduces the migration downtime.
We repeat the OpenNF migration experiments with varying
number of states and find that migration downtime increases
with number of states as shown in Figure 2(b).! Thus, migrat-
ing fewer states can greatly cut the downtime and eliminate
the extra latency to mice flows. Second, it also helps mini-
mize migration overhead at both the controller and Openflow
switches. The controller has fewer flows to buffer packets
and send messages for. Additionally, fewer forwarding rules
need to be updated at Openflow switches to adjust routing of
flows, further streamlining the entire migration process with
flows and states.

Note, in some cases it is necessary to move states for all
flows, for example when the VNF crashes. U-HAUL does
not apply in these cases.

3 Design and Implementation

Figure 3 shows the overall design of U-HAUL based on
OpenNF. A controller manages both the NF state and flow
routing at switches. U-HAUL consists of three components:
an elephant detection module (EDM) at each VNF, a new
northbound API call between applications and the controller,

I'This is likely due to the increased complexity of providing
loss-free and order-preserving guarantees with more packets.



and a new filter API between the controller and the EDM to
obtain elephant flow information. In general these compo-
nents work as follows: When the control application initiates
state migration using the U-HAUL API call, the elephant
detection module selects flows to be migrated out of all ac-
tive flows and transfers their information to controller via the
filter API. The controller then invokes the OpenNF methods
to iteratively move the states of these to the destination VNF.

Note that during state migration, the original NF instance
stops establishing new states for flows it has not seen yet.
All packets that hit the original instance but do not have
any matching state are forwarded to the new instance which
processes them normally. For example for a persistent TCP
connection that does not always have traffic, U-HAUL would
not regard it as new flow, which guarantees the correctness
of NFs.
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Figure 3: U-HAUL Overview

3.1 Elephant Detection

We describe the design of the elephant detection module
(EDM) in this section.
Flow Monitor: Elephant detection relies on a flow monitor
to collect information of active flows at each VNF. Here we
consider active to mean existing within the last 100ms time
window. The monitor maintains a flow information table
(FIT), where each entry stores the flow ID hashed from five-
tuples, its current size, and a timestamp of its last packet.
There are three operations associated with the FIT: inser-
tion, update, and eviction.
Insertion: When a packet arrives at the VNF, if the flow
is not present in the FIT, a new entry with the flow ID and
timestamp is added.
Update: When a packet arrives and its flow is present in the
table, the size and timestamp of the flow is updated.
Eviction: Every 100ms, an eviction pointer goes through the
FIT to evict entries whose timestamps are not within the last
time window. This helps maintain the FIT size in a reason-
able level as we will show in §4.4. We have tried 20ms,
50ms, 100ms as time window values to evict flow entries.
We choose 100ms because it is able to cover all active flows
that indeed cause overload for NF instance.

The flow monitor adds delay to the VNF’s packet pro-
cessing. This overhead can be minimized by implementing
it using high-performance packet I/O frameworks such as
DPDK [1] or netmap [22] with microsecond level delay [11].
Traffic Proportion based Detection: Elephant flow detec-
tion is usually used to optimize per-flow routing in data center
networks, such as in Hedera [4] and Mahout [6]. These sys-
tems use a size-based approach: a flow is classified as an
elephant when it has sent more than a certain amount of
bytes.

However, in U-HAUL, we need to tell whether an active
flow will be an elephant or not based on its current size at
the time of migration, and the size-based approach cannot
detect elephant flows that have not sent enough bytes. Thus,
we adopt a detection approach based on proportion of traffic
instead. First, the operator monitors the traffic of its network
and calculates the proportion of traffic p that comes from
elephant flows. This is the target threshold value configured
at each EDM. At the time of migration, the EDM queries its
FIT for all active flows and obtains the total current size S.
It then selects flows one by one based on their current size in
the decreasing order and calculates the total size of selected
flows S’, until the proportion of traffic from the selected flows
S’/S is larger than or equal to p.

Effectively our approach relies on relative size of a flow,
making it less prone to false negatives from using the absolute
size. If we use 3MB as the elephant definition, a flow that has
sent 2.5MB is likely to be detected in our approach, whereas
the size-based approach will miss it.

3.2 A New Northbound API Call

U-HAUL provides a new northbound API callmoveElephant
for applications to enable elephant-only state migration. It
transfers both the state and input (i.e., traffic) for a set of flows
from one VNF to another. Its syntax is:

moveElephant (src, dst, scope, properties).

The implementation extends OpenNF’s move method. The
scope argument specifies which class(es) of state (per-flow
and/or multi-flow) to move. We only consider per-flow in
this paper. The properties argument defines whether the
move should be loss-free and order-preserving [10].

When the control application issues moveElephant, the

controller communicates with the elephant detection module
(EDM) in order to determine which flows are elephant flows.
This is done through the filter API described below.
Filter API: The filter API between the controller and the
EDM consists of FilterChannel and SetFilter func-
tions. When the controller receivesmoveElephant call, itin-
vokes the FilterChannel function to send a getElephant
message to the EDM. The EDM runs its detection logic as
discussed in §3.1. It then uses the SetFilter function to
package the five-tuples of selected flows and send them to the
controller to match the filter, which is a dictionary specifying
values for five-tuples in OpenNF.

The controller uses the matched filters to configure the
moveElephant operation. For each filter, it invokes the
OpenNF getPerflow function and pass the filter as the input



to get the per-flow state pertaining to the flow. For a move
without guarantees, the controller calls putPerflow on the
destination VNF instance and delPerflow on the original
VNF instance to complete per-flow state transfer.

4 Evaluation

We now evaluate the performance of U-HAUL using an Em-
ulab testbed [2]. We answer the following questions:

(1) How well does U-HAUL’s elephant detection work?

(2) How much performance benefit can U-HAUL provide
compared to OpenNF?

(3) How much overhead does U-HAUL add?

(4) Can the remaining flows actually die out in time when
migration finishes?

4.1 Testbed and Setup

Our testbed consists of five servers arranged as shown in Fig-
ure 1(b). Each server has two 2.4GHz Intel Xeon 8-Core E5-
2630 v3 processors, 64GB DDR4 RAM, and a quad-port Intel
X710 10GbE NIC. Two servers run two OpenNF-modified
PRADS [3] VNFs separately. One server runs OpenvSwitch
as an OpenFlow switch. Another one runs the U-HAUL con-
troller while the fifth server generates traffic. We use the web
search workload [5], the Facebook workload [23], and the
Azure WAN workload [12] shown in Figure 1(a) to generate
traffic: flows arrive and finish dynamically according to a
Poisson process with an average load of 1, i.e., 10Gbps.
Methodology: We generate five traces of flows using the
three workloads, send flows according to the traces, and
choose a random time after 2 seconds into the traces to start
migration. The same traces are used for the different schemes
compared. Thus for each scenario we repeat experiments for
five independent runs. We report the average result of the
five runs. We consider elephant flow definitions from 3MB
to 10MB for web search workload and Facebook workload,
and from 1MB to 2.5MB for Azure WAN workload. We use
the corresponding threshold values on proportion of elephant
traffic for our EDM.

Schemes Compared: We compare U-HAUL against OpenNF
that moves all flows. We choose OpenNF because only it pro-
vides loss-free and order-preserving guarantees compared
with other solutions mentioned in §5. These guarantees are
important to ensure the new NF instances work correctly. U-
HAUL also provides these guarantees. In our experiments,
we set the guarantee to be loss-free, the scope to be per-flow
state, and the optimizations to be parallelizing and early-
release for both schemes. This is consistent with the setup
in [10].

4.2 Accuracy of Elephant Detection

We first investigate the accuracy of our elephant detection
module. We do so by comparing the detection output of our
EDM with the trace files that record the actual size of flows.

Figures 4, 5 and 6 show the accuracy results. The average
number of active flows is 142.3 in the web search workload,
364.0 in the Facebook workload, and 955.4 in the Microsoft
Azure workload. We observe that our method based on
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Figure 6: Accuracy of elephant detection using Azure WAN work-
load.

proportion of elephant traffic performs well for different def-
initions of elephant flows. For web search workload, the
average accuracy of different definitions of elephant flows
is 95.0%; the minimum is 91.9%. For Facebook workload,
the average accuracy is 94.9%; the minimum is 93.3%. For
Azure WAN workload, the average accuracy is 87.5%; the
minimum is 69.8%. Tables 1, 2 and 3 show the false posi-
tive and false negative rates, which further demonstrates the
effectiveness of our method.

Besides, Tables 1, 2 and 3 show that different workloads
have different false positive and false negative rates. The
Azure WAN workload has higher false positive and false
negative rates. This is because different workloads have dif-
ferent flow size distributions, which is shown in Figure 1(a).
Comparing the flow size distributions with the results of Ta-
bles 1, 2 and 3, we can see the trend is that the larger the
proportion of mice flows is, the larger the false positive and
false negative rates are. Taking the Azure WAN workload
as an example, we can see more than 60% flows are smaller
than 10KB. If we choose 2.5MB as the elephant threshold, the



number of elephant flows is very small. Besides, most non-
elephant flows may be smaller than 10KB. This means that
our elephant detection approach chooses more non-elephant
flows to meet the proportion threshold. This results in larger
false positive and false negative rates.

Definition (MB) 3 4 5 6 7 8 9 10
False Positive Rate | 1.2% | 1.9% | 1.2% | 1.2% | 1.4% | 1.1% | 0.7% | 0.6%
False Negative Rate | 1.6% | 5.6% | 4.4% | 5.2% | 7.7% | 7.0% | 8.1% 0

Table 1: False positive and false negative rates for the web search
workload.

Definition (MB) 3 4 5 6 7 8 9 10
False Positive Rate | 0.6% | 0.5% | 0.5% | 0.3% | 0.3% | 0.3% | 0.2% | 0.2%
False Negative Rate | 5.2% | 3.8% | 6.1% | 4.9% | 5.4% | 6.7% | 4.3% | 4.5%

Table 2: False positive and false negative rates for the Facebook
workload.

Definition (MB) 1 15 2 25
False Positive Rate | 6.4% | 19.1% | 19.6% | 35.0%
False Negative Rate | 1.2% | 9.9% | 8.4% | 30.1%

Table 3: False positive and false negative rates for the Azure WAN
workload.

We also compare our approach with the size-based ap-
proach. Tables 4 and 5 show the false negative rate of size-
based detection for the Facebook workload and Azure WAN
workload. Result of the web search workload is similar with
the Facebook workload and omitted here. We observe that
the size-based approach has a higher false negative rate com-
pared to our approach. This is expected because a size-based
approach easily misses elephant flows that do not meet the
threshold at the time of migration.

4.3 Downtime, Buffer Usage, and FCT

We now evaluate the performance benefit of U-HAUL com-
pared to OpenNF along three dimensions: migration down-
time, buffer usage for migration at the controller, and flow
completion time (FCT) reduction to mice flows. Figures 7,
8 and 9 show the downtime and buffer usage results. Down-
time here is defined as time elapsed between the beginning
of the moveElephant call and the finish time of the last
delPerflow call. Buffer usage refers to the overall memory
used to buffer packets that arrive during the state transfer.
We observe that U-HAUL provides significant performance
benefits. For example for web search workload, U-HAUL
reduces the downtime by at least 81.8% and up to 90.7%
compared to OpenNF. It saves at least 59.3% buffer usage,
and the saving can be up to 81.9%. The observation demon-
strates U-HAUL can manage state migration very efficiently.

We also look at the FCT reduction to the mice flows pro-
vided by U-HAUL. FCT reduction is defined as the ratio
between the mice flow’s FCT in OpenNF and its FCT in U-
HAUL. In OpenNF, the FCT includes the migration down-
time as OpenNF moves all flows, whereas in U-HAUL the
mice flows’ FCT is not affected by the migration at all. We
calculate FCT reduction for all mice flows excluded in U-
HAUL’s state migration. Tables 6 and 7 show the results.
The mice flow FCT in OpenNF is at least 4.6 times that
of U-HAUL for web search load, 18.3 times for Facebook
workload, and 43.0 times for Azure WAN workload. This
means U-HAUL reduces extra latency to mice flows by at

[ Definition (MB) 3 1 4 1 5 [ 6 7 1 8 [ 9 T 10
[ False Negative Rate | 12.5% | 13.0% | 182% | 10.0% | 10.0% | 13.3% | 143% | 154% |

Table 4: False negative rate of the size-based elephant detection
for the Facebook workload.

‘ Definition (MB) ‘ 1 ‘ 1.5 ‘ 2 ‘ 2.5 ‘
‘ False Negative Rate ‘ 12.0% ‘ 20.1% ‘ 13.2% ‘ 55.6% ‘

Table 5: False negative rate of the size-based elephant detection
for the Azure WAN workload.
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Figure 7: Downtime and buffer usage comparison in web search
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Figure 8: Downtime and buffer usage comparison in Facebook
workload.
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Figure 9: Downtime and buffer usage comparison in Azure WAN
workload.

Definition (MB) 3 4 5 6 7 8 9 10
Web search 67 | 46 | 46 | 46 | 46 | 46 | 48 | 48
Facebook 209 | 209 | 209 | 183 | 183 | 183 | 183 | 18.3

Table 6: The mice flow FCT reduction of U-HAUL compared to
OpenNF in Web search and Facebook workload.

Definition (MB) 1 1.5 2 2.5
Azure WAN 43.0 | 47.6 | 47.0 | 45.0

Table 7: The mice flow FCT reduction of U-HAUL compared to
OpenNF in Azure WAN workload.

least 78.3% for web search workload, 94.5% for Facebook
cache workload, and 97.6% for Azure WAN workload.



4.4 Overhead

We now evaluate the overhead of U-HAUL. We first consider
the overhead of using the FIT in EDM. Table 8 shows the
number of entries in the FIT at each 100ms-eviction epoch for
one run of our experiment using the Facebook workload and
the Azure WAN workload. Results of web search workload,
Facebook workload, and the Azure WAN workload for other
runs are qualitatively similar. It indicates that the overhead
of FIT is bounded in a reasonable level.

6 [ 7 1 8 [ 9 [10
679 | 729 | 746 | 743 | 788
478 | 1579 | 1497 | 1511 | 1517 |

[ Time (x100ms) [T [ 2374 |
[ Number of Entries (Facebook) | 403 | 746 | 774 | 753 1]
\ \

[ s
| 73
Number of Entries (Azure WAN) | 624 | 1454 | 1576 | 1503 | 1529

1

Table 8: The number of FIT entries in one run of the experiment
using the Facebook workload and the Azure WAN workload.

Next, we consider the number of “missed” flows that per-
sist after migration finishes, and therefore should have been
included in the migration. A missed flow may be an elephant
not detected by the EDM, which results in a false negative.
More importantly it can also be a flow with size very close
to the elephant threshold that is not detected by the EDM,
which may be more likely in practice. Ideally the number
of missed flows should be zero, meaning all of the flows left
at the original VNF should finish when the migration of big
flows completes. Yet this is difficult to achieve simply be-
cause predicting the FCT of a flow especially at the beginning
of its transmission is challenging.
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Figure 10: The number of missed flows in the Web search work-
load and Facebook workload. The results are the average of 5
runs.

[ Definition MB) [ 1[15] 2 [25]
| Number of missed flows [ 0 [ 0 [ 04 [ 24 ]

Table 9: The number of missed flows in the Azure WAN workload.
The results are the average of 5 runs.

Now, we evaluate the number of missed flows by compar-
ing U-HAUL downtime with flows start times and FCTs from
the trace files. Figure 10 and Table 9 show the results. Only
a few missed flows exist in our experiments out of a total
of 142.3 active flows in the web search workload, 364.0 in
the Facebook workload, and 955.4 in the Azure WAN work-
load as mentioned in §4.2. Another phenomenon is that a
larger elephant flow definition causes more missed flows in
general. This is intuitive: As we move to consider bigger
elephant flows, fewer states need to be moved and the migra-
tion downtime is also shorter, making it more likely to have
missed flows.

4.5 Die-out Time After Migration

Definition (MB) 3 4 5 6 7 8 9 10
Web search (ms) | 0.095 | 7.611 | 8.980 | 9.501 | 9.926 | 10.540 | 11.403 | 11.696
Facebook (ms) | 9.281 [ 9.623 | 9.818 | 15.820 | 16.245 | 16.746 | 17.155 | 17.251

Table 10: The die-out time of missed flows in the Web search
workload and Facebook workload.

Definition MB) | 1 | 1.5 2 2.5
Azure WAN (ms) | O | O | 0.350 | 1.445

Table 11: The die-out time of missed flows in the Azure WAN
workload.

Definition (MB) 3 4 5 6 7 8 9 10
Web search (ms) | 7.694 | 13.311 | 13.280 | 13.301 | 13.226 | 13.240 | 13.303 | 13.296
Facebook (ms) | 13.181 | 13.123 | 13.018 | 18.520 | 18.645 | 18.746 | 18.655 | 18.751

Table 12: The total time of U-HAUL in the Web search workload
and Facebook workload.

[ DefiniionMB) | 1 | 15 [ 2 [ 25 |
| Azure WAN (ms) | 50.603 | 13.685 | 9.542 | 5.266 |

Table 13: The total time of U-HAUL in the Azure WAN workload.

We now evaluate the die-out time of missed flows, defined
as time elapsed between the completion of states transfer
and the termination time of the last missed flow. Die-out
time reflects how long the original instance has to wait till
all missed flows die out. Tables 10 and 11 show the results.
The minimum die-out time for web search workload and
Facebook workload appears when elephant flow threshold is
3MB, and for Azure WAN workload 1MB. We can see the
die-out time increases as elephant flow threshold increases,
a trend similar to the number of missed flows.

We also observe that there is an interesting tradeoft be-
tween die-out time and downtime shown in §4.3. With a
larger elephant flow definition, the downtime decreases but
the die-out time increases, because we move fewer elephant
flows for state migration, and more flows are left at the orig-
inal instance until they die out. This implies that it is not
possible to minimize both metrics at the same time. As
the extreme examples, one can minimize downtime by not
migrating any flows, which results in the maximum die-out
time; one can also minimize die-out time by migrating many
elephant flows, which then yields long downtime. Neither
are desirable for operators. Thus we consider the total time
of U-HAUL, defined as downtime plus the die-out time of
missed flows, to assess this tradeoff. Total time can be un-
derstood as the time of the entire migration process. It is
different from downtime in §4.3, which is the actual time
during which active flows are buffered and affected.

Tables 12 and 13 show the total time results. We observe
that there is a sweet spot for the tradeoff depending on the
flow size distribution: For web search workload, 3MB is the
best elephant flow threshold that gives the shortest total time;
for Facebook cache workload the sweet spot is SMB, and for
Azure WAN workload 1.5MB. Note that for Azure WAN
workload, when the elephant flow thresholds are 2.5MB,
2MB, 1.5MB, and 1MB, respectively, the associated propor-
tions of traffic are 20%, 32%, 66%, and 78%. It is more
reasonable to choose 1.5MB for load balancing. Under this
setting, U-HAUL migrates a significant proportion of traffic



from the original instance for load balancing to reduce the
die-out time with short downtime as well.

5 Related Work

Many solutions exist for NFV state management. Split/Merge
[21], Pico Replication [20], OpenNF [9, 10], and DiST [15]
are systems that provide some control over both internal NF
state and network state. Split/Merge and Pico Replication
provide shared libraries that NFs use to create, access, and
modify internal state through pre-defined APIs. OpenNF
provides a northbound API for applications to specify which
state to move, and which guarantees to enforce; it also im-
plements a southbound API for the controller to perform the
export or import of NF state. DiST differs from OpenNF by
buffering the packets during migration at the destination VNF
instead of at the controller. StatelessNF [14] re-architects net-
work functions so that their internal state is maintained in a
shared separate storage tier, which have to face the challenge
that states update frequently. FTMB [24] focuses on recon-
structing lost state when a software middlebox fails. Finally,
Olteanu and Raiciu [16] attempt to migrate per-flow state
between VM replicas without application modifications.

These solutions all provide state migration which moves
state of all flows. The key difference between U-HAUL
and existing work is that we distinguish elephant flows from
mice, only migrate their states for load balancing scenario,
and develop an efficient elephant detection method.

6 Conclusion

We introduced U-HAUL, an efficient state migration system
in NFV. U-HAUL only migrates per-flow state for elephant
flows and maintains state for mice flows in the original NF
instance until they expire. We implemented U-HAUL based
on OpenNF and evaluated it on an Emulab testbed. Our
preliminary results show that U-HAUL significantly reduces
the migration downtime and the performance penalty.

For future work, we intend to improve U-HAUL using
more accurate elephant detection with less overhead. We
also plan to optimize its implementation, and conduct more
comprehensive evaluation with more NFs.
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