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1 INTRODUCTION
Cellular networks have become a dominant mode of Internet access,
and cellular traffic continues to explode with 5G on the horizon.
This motivates us to re-visit one of the lingering problems in our
community, cellular congestion control.

Despite much prior work [5–7], congestion control (CC) in cellu-
lar networks still suffers from performance issues. It is well-known
that general CC schemes do not work well in cellular networks
because the congestion signals they rely on, packet loss or delay,
cannot distinguish the inherent variations of the wireless channel
from the actual network congestion events. A few lost packets or
some RTT variations can easily cause TCP to drastically reduce
the window size and significantly under-utilize the channel [6, 7],
which is demonstrated in Figure 1 using BBR and Cubic as examples.

Many CC designs have been proposed specifically for cellular net-
works. They usually tackle particular facets of the cellular wireless
scenario with specific tradeoffs and come short of improving the
overall performance. Sprout [5] for example achieves low latency
for interactive applications by proactively inferring the dynamics of
network path based on packet arrival times. As shown in Figure 1b
it does reduce the queueing delay consistently, but its throughput
is often sacrificed as a result compared to BBR and Cubic.
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Figure 1: We use Mahimahi [3] to emulate the cellular net-
work conditions by replaying aVerizon LTE driving trace [5]
between a client and server. The client downloads a 100MB
file from the server with different CC schemes.

We believe the fundamental limitation of the above work is that
they, as transport layer designs, are effectively blind to the state
of the wireless channel at the physical (PHY) layer. While upper-
layer metrics such as packet arrival times provide hints about the
wireless channel, they are hints at best. If the PHY layer of a mobile
device can reveal the complete wireless channel information, such
as the amount of channel resources allocated by the base station,
we would be able to know fairly accurately the capacity of the link
and the CC protocol can function much more efficiently.

We thus carry out a preliminary exploration of the feasibility
and potential of this design principle. The downlink capacity of
a user equipment (UE) is dictated by the base station (BS) which
periodically signals its resource allocation decisions to contending
UEs on the physical downlink control channel (PDCCH) [1, 6]. A BS
in LTE allocates radio resources in units of both time and frequency
called resource blocks (RBs). An RB is the smallest allocable resource
unit spanning over 7 time-domain OFDM symbols (66.7us for one
symbol) and 12 frequency-domain OFDM subcarriers (15kHz for
one subcarrier) in general. PDCCH carries the allocated RBs and
the associated modulation and coding scheme (MCS) to a UE. Based
on the mapping rules specified in the LTE standard [1], the UE
maps the MCS and the number of RBs to the transport block size
(TBS). TBS exactly specifies the number of bytes that can be carried
on the downlink in this scheduling period (1ms usually).

Therefore the key challenge is that, how to leverage the PHY
layer information at the UE for congestion control at the remote
server side? There are two important problems here. First, the
server only sees past PHY information because of the wide-area
delay, and needs to predict the future available bandwidth at RTT
time scale at the UE. Second, it also needs to identify a control
policy for congestion control based on the prediction results, taking
into account factors such as other users sharing the Internet [2].
Some recent work uses time average over O(100)ms periods for
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Figure 2: Tyrus overview

bandwidth prediction and fixed handcrafted rules for rate control
[6]. Clearly these techniques are too simplified to deliver optimal
performance: as shown in Figure 1a the throughput of CLAW [6]
has a clear gap with the channel capacity.

We propose to adopt deep reinforcement learning (RL) to solve
these two problems as a whole. RL is a basic machine learning par-
adigm where an agent learns the optimal control policy that maps
the input state to the output actions by continuously observing
the rewards of its actions from the environment [4]. It does not as-
sume knowledge of an exact mathematical model of the interactions
between the agent and the environment, making it a promising
approach that autonomously adjusts cellular congestion control
based on a multitude of dynamic signals from both the UE’s PHY
layer and the Internet.

2 DESIGN
Figure 2 shows the overview of our design called Tyrus for PHY-
assisted RL-based cellular congestion control. The TCP client, i.e.
the UE, receives from the BS control messages about the allocated
RBs and MCS every millisecond and data packets in subframes
each lasting 1ms as discussed in §1. It piggybacks the TBS values
for each subframe to the server as one of the input signals about
the downlink capacity for congestion control. Either ACKs or a
dedicated UDP connection can be used for piggybacking. The server
collects network states including the TBS signal as input to a RL
agent, which runs a deep neural network to determine actions that
adjust the congestion window, i.e., the number of packets that can
be sent.
Input states. Network states are updated by the network state
tracker in Tyrus. The following states are used:

(1) an exponentially-weighted moving average (EWMA) of TBS
values obtained from the client feedback.

(2) an EWMA of ∆RTT measured as the difference between the
current RTT and the minimum RTT observed during the
current connection.

(3) an EWMA of the receiving rate, defined as the number of
bytes received since the ACK preceding the transmission of
the most recently ACKed packet, divided by the correspond-
ing duration.

(4) current congestion window size.
(5) the previous action taken.

Neural Network. We use a small-scale fully connected neural
network as the RL model. We experiment with different numbers of
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Figure 3: Throughput and delay of each protocol over two
scenarios. Better results are up and to the right.

hidden layers and neurons in each layer, and choose three hidden
layers each with 16 neurons and ReLU as the activation function.
Reward Function. We train our model using a linear reward func-
tion: α ∗ throuдhput − β ∗ latency−γ ∗ 108 ∗ loss , where throughput
is measured in Mbps, latency in milliseconds, and loss is the propor-
tion of packets lost between 0 and 1. All of them are taken within
one RTT. We can adjust the values of α , β , and γ to optimize for
various applications. They are set to 1 by default.
Action Space. An action is defined as a change in congestion win-
dow sizeWt :Wt =Wt−1 ∗ (1±σ ), where σ = 0, 5%, 10%, . . . , 100%.

3 EVALUATION
We develop a simple prototype of Tyrus. The server runs QUIC
with the RL running on top. We use Mahimahi and feed six different
cellular network traces to the prototype to train our RL model. The
historical link capacity information is available in these traces. We
compare Tyrus against BBR, Cubic, Vegas, and Sprout [5]. Figure 3
shows the throughput and 95%ile delay results in stationary and
moving scenarios with another two traces. Tyrus demonstrates
competitive throughput compared to BBR, Cubic, and Vegas, and
is consistently better than Sprout; its delay performance is also
much better than BBR, Cubic, and Vegas. In sum, Tyrus is the
performance winner. Because BBR and Cubic are insensitive to
queue buildup, they tend to send at a high rate which causes self-
inflicted congestion and hence large RTTs. On the other hand, Vegas
often overreacts to delay spikes, resulting in extremely small queues
and leaving the bandwidth underutilized, and Sprout has the same
problem due to significantly underestimating the network capacity
for strict packet latency guarantees. In contrast, Tyrus can predict
the variations of cellular link capacity in time by utilizing the PHY
layer information and adjust congestion window size adaptively
with the guidance of trained RL policies.

Though not yet included in the Tyrus prototype, it is feasible
to expose PHY layer information at the mobile device through
the diagnostic interface available on most phones with Qualcomm
chipsets. The output logs can be decoded only by Qualcomm’s
QCAT software tool, but one can reverse-engineer the log format
to achieve real-time decoding [6].
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