
Kuijia: Traffic Rescaling in Data Center WANs
Che Zhang∗, Hong Xu∗, Libin Liu∗, Zhixiong Niu∗, Peng Wang∗, Yongqiang Tian∗, Chengchen Hu†

∗NetX Lab, City University of Hong Kong, Hong Kong
†Department of Computer Science and Technology, Xi’an Jiaotong University, China

Abstract—Network faults like link or switch failures can cause
heavy congestion and packet loss. Traffic engineering systems need
a lot of time to detect and react to such faults, which results in
significant recovery times. Recent work either pre-installs a lot of
backup paths in the switches to ensure fast reroute, or proactively
pre-reserve bandwidth to achieve fault-resiliency. Our idea agilely
reacts to failures in data plane while eliminating pre-installation
of backup paths. We propose Kuijia, a robust traffic engineering
system for data center WANs which relies on a novel failover
mechanism in data plane called rate rescaling. The affected flows
on failed tunnels are rescaled to the remaining tunnels, and enter
low priority queues to avoid performance impairment of abnormal
flows on remaining tunnels. Real system experiments show that
Kuijia is effective in handling network faults and significantly
outperforms conventional rescaling method.

I. INTRODUCTION

Increasingly, traffic engineering (TE) is implemented using
software defined networking (SDN), especially in inter-data
center WANs. Examples include Google’s B4 and Microsoft’s
SWAN [6, 7]. Usually some tunnel protocol is used: the con-
troller establishes multiple tunnels (i.e. network paths) between
an ingress-egress switch pair, and configures splitting weights at
the ingress switch. The ingress switch then uses hashing based
multipath forwarding such as ECMP to send flows [6, 7, 9].

An important issue about TE that is commonly overlooked
in the literature is robustness against failures. In reality, fail-
ures are the norm rather than exception, especially for large
networks. Table I shows failure statistics data from Microsoft’s
data center WAN [3]. The probability of having at least one
link failure within five minutes, which corresponds to the TE
frequency [6, 7], is more than 20%. Even with a single link
failure, the impact can be severe as a data center WAN operates
near capacity for maximum efficiency [6, 7].

TABLE I
LINK FAILURE FREQUENCIES IN MICROSOFT DATA CENTER WAN [3].

Number of link failure Time intervals
2 min 5 min 10 min

1 10.6% 21.5% 31.2%
2 0.14% 1.1% 4.2%
3 0.14% 0.7% 1.4%

Controller intervention offers the best failure recovery perfor-
mance given its global network view. However, re-computing a
new TE plan and updating the forwarding rules across the entire
network take at least minutes and are error-prone [5, 9, 10].
For responsiveness, a simple data plane reactive method called
rescaling is deployed in practice. Upon detecting the failure, the
ingress switch normalizes splitting weights to re-direct traffic

among the remaining tunnels [9]. Rescaling quickly restores
connectivity without involving the controller at all. However
since traffic is still sending at the original rates, local rescaling
more than often leaves the network in a congested state [9].

Some solutions have emerged to solve this practically im-
portant issue. Suchara et al. [14] propose to pre-compute the
splitting weights for arbitrary faults to reduce transient con-
gestion. This approach may not work well for large production
networks due to the exponentially many failure cases. Liu et al.
[9] propose Forward Fault Correction (FFC). FFC proactively
considers failures when formulating the TE problem. As a
result, the TE solution can guarantee no congestion happens
for arbitrary k faults with rescaling. Intuitively, such strong
guarantees come with a price: in FFC a portion (about 5%–
10% depending on k) of the network capacity has to be
always left vacant in order to handle traffic from rescaling.
This means hundreds of Gbps bandwidth is wasted most of the
time. Arguably, the cost outweighs the benefits of eliminating
transient congestion.

Thus, the following question remains largely open: can we
design a robust TE system that is (1) responsive in quickly
restoring connectivity; (2) effective in reducing congestion
without excessive bandwidth overhead, and (3) practical and
simple enough to be deployed in existing switches?

Our main contribution is the design and evaluation of Kuijia,1

a robust TE system for data center WANs that answers this
question in the positive. Kuijia relies on a novel failover
mechanism in the data plane called rate rescaling that rescales
the traffic sending rates in addition to splitting weights, by
using priority queueing at switches. The victim flows are still
rescaled by ECMP to the remaining tunnels, but they now
enter a low priority queue at the switches and do not compete
with aboriginal flows on the remaining tunnels. Effectively
their sending rates are automatically throttled to only using the
available bandwidth of the remaining tunnels without the need
of controller intervention.

Kuijia with rate rescaling offers an advantage over simple
rescaling in ECMP. Rescaling only ensures the failed link
is avoided. Yet flows are still sending at their original rates
to the remaining tunnels. Clearly with the loss of capacity,
many packets will be dropped after rescaling, and every TCP
flow on the remaining tunnels will back off and suffer from
throughput loss. Rate rescaling ensures there is no congestion
even with the victim flows, and the aboriginal flows are not

1The word “Kuijia” means armour in Chinese. Kui is for protecting the head
and neck, and Jia is for protecting the torso.

affected. It maintains the responsiveness of rescaling, is simple
to implement as priority queueing is widely supported by
commercial switches, and is effective in utilizing the available
bandwidth due to the work-conserving nature.

II. MOTIVATION

We motivate our idea using a simple example. Fig. 1(a)
shows a small network with traffic sent from s1 to s4. The
traffic is routed over three tunnels: s1->s2->s4 (T1), s1->s4
(T2), and s1->s3->s4 (T3). Each tunnel is configured with the
same weight, and carries 8Gbps traffic. When link s2–s4 in
T1 fails, s1 rescales the traffic to the remaining two tunnels,
resulting in traffic distribution as shown in Fig. 1(b). Since the
traffic is still sent at 24Gbps, the remaining tunnels T2 and T3
need to carry 12Gbps each and are heavily congested.

s2

s1 s4

s3

8

8

8

s2

s1 s4

s3

12

12

s2

s1 s4

s3

2
8

8

Link Capacity: 10

Link failure

Congestion

Link failure

2

(a) Initial traffic distribution (b) Traffic distribution after rescaling (c) Traffic distribution after rate rescaling

Congestion

Fig. 1. Comparison of rescaling and rate rescaling in handling a single link
failure.

The difference between Kuijia and conventional rescaling is
that Kuijia differentiates aboriginal traffic on remaining tunnels
from victim traffic rescaled to them. Kuijia places the victim
traffic into a low priority queue of the remaining tunnels, while
the aboriginal traffic enters a higher priority queue. With Kuijia,
traffic is distributed as shown in Fig. 1(c). The victim traffic
(shown in yellow) uses the remaining capacity of T2 and T3
and sends at 2Gbps in each tunnel. This does not cause any
congestion or packet loss for the aboriginal flows, and fully
utilizes the link capacity.

We experimentally verify the effectiveness of Kuijia using a
testbed on Emulab [1]. We connect 4 Emulab servers running
OpenvSwitch (OVS) [11] to form the same topology as in
Fig. 1. A dedicated server runs the controller to manage the
network. In Kuijia, 3 strict priority queues are configured on the
egress ports of each switch. Control messages enter the highest
priority queue with priority 0. Normal application traffic has
priority 1, but is demoted to priority 2 once it is rescaled to
other tunnels after failures. For simplicity both rescaling and
Kuijia are implemented in the control plane: A switch informs
the controller of a link failure. The controller then adjusts the
flow splitting weights and priority numbers at the corresponding
egress switches of the victim flows.

Switch s1 starts iperf TCP connections to s4 over three
tunnels. Since in our example rescaling splits the victim flow
on T1 to T2 and T3, we configure s1 to send two iperf TCP
flows f1 and f2 over T1. Flow f1 is rescaled to T2 and f2 to
T3. s1 sends another two flows f3 and f4 over T2 and T3,
respectively.

We run two experiments with different extent of congestion
to demonstrate the effectiveness of Kuijia. Table II shows

TABLE II
TESTBED EXPERIMENT FOR THE MOTIVATION EXAMPLE, WHERE THE
REMAINING TUNNELS HAVE VACANT CAPACITY FOR VICTIM TRAFFIC.

Flows f1 f2 f3 f4
Rescaling:
Before failure 380Mbps 381Mbps 762Mbps 762Mbps
After failure 379Mbps 378Mbps 584Mbps 586Mbps
Kuijia:
Before failure 380Mbps 381Mbps 762Mbps 762Mbps
After failure 177Mbps 177Mbps 762Mbps 762Mbps

TABLE III
TESTBED EXPERIMENT FOR THE MOTIVATION EXAMPLE, WHERE THE

REMAINING TUNNELS DO NOT HAVE VACANT CAPACITY.

Flows f1 f2 f3 f4
Rescaling:
Before failure 475Mbps 468Mbps 943Mbps 941Mbps
After failure 472Mbps 474Mbps 465Mbps 470Mbps
Kuijia:
Before failure 475Mbps 468Mbps 943Mbps 941Mbps
After failure 0.074Mbps 0.011Mbps 943Mbps 941Mbps

the result when flows f3 and f4 send at 800Mbps, and f1
and f2 at 400Mbps each before failure. This represents the
case when the remaining tunnels (T2 and T3) have vacant
capacity. We observe that with simple rescaling, throughput of
all flows degrades after failures, since the aggregate demand
of victim and aboriginal flows (1.2Gbps) exceeds 1Gbps. Now
with Kuijia, aboriginal flows f3 and f4 are not affected at all as
shown in Table II, and the victim flows use the vacant capacity
of 200Mbps without causing any congestion or packet loss.

Table III shows the result when f3 and f4 send at 1Gbps,
and f1 and f2 at 500Mbps each before failure. This represents
the case when the remaining tunnels do not have any capacity
for the victim traffic. Rescaling again causes severe congestion
to aboriginal traffic on the remaining tunnels, and after TCP
convergence f1 and f3 achieve throughput of ∼470Mbps. With
Kuijia, the victim traffic (f1 and f2) does not obtain any
throughput and the aboriginal flows are not impacted at all.

III. DESIGN

In this section we first introduce the background of TE and
rescaling implementation in production data center WANs, then
explain the design of Kuijia and its difference from rescaling.

A. Background

In a data center WAN, after the controller computes the
bandwidth allocation and weights for all the tunnels of each
ingress-egress switch pair, it issues the group table entries and
flow table entries in OpenFlow [7, 8]. Label-based forwarding is
usually used to reduce forwarding complexity [6]. The ingress
switch uses group entry in the group table to split traffic across
multiple tunnels, and assigns a label to traffic of a specific
tunnel. The downstream switches simply read the label and
forward packets based on the flow entries for that label from
the flow table. As an example, Fig. 2 shows the group tables

s2

s1 s4

s3

8

8

8

Port 1

Port 3

Port 2

Port 1

Port 3

Port 2

Port 1

Port 1

Port 2

Port 2

low=0, inport=1, pathid=1 enqueue(1), outport=2

low=1, inport=1, pathid=1

Prio

1

*2 enqueue(2), outport=2

low=0, inport=2, pathid=1 enqueue(1), outport=1

low=1, inport=2, pathid=1

1

*2 enqueue(2), outport=1

Match Action

low=0, inport=1, pathid=3 enqueue(1), outport=2

low=1, inport=1, pathid=3

Prio

1

*2 enqueue(2), outport=2

low=0, inport=2, pathid=3 enqueue(1), outport=1

low=1, inport=2, pathid=3

1

*2 enqueue(2), outport=1

Match Action

low=0, ipdst in iprange=10.0.2.0/24 popmpls(), enqueue(1), outport=4

low=1, ipdst in iprange=10.0.2.0/24

Prio
1

*2 popmpls(), enqueue(2), outport=4

ipdst in iprange=10.0.1.0/24 go to group 11

Match Action

Port 4 Port 4

10.0.2.0/2410.0.1.0/24

low=0, ipdst in iprange=10.0.1.0/24 popmpls(), enqueue(1), outport=4

low=1, ipdst in iprange=10.0.1.0/24

Prio
1

*2 popmpls(), enqueue(2), outport=4

ipdst in iprange=10.0.2.0/24 go to group 11

Match Action

group 1

bucket 1: weight=100, pushmpls(pathid=1, low=0), enqueue(1), outport=1

bucket 2: weight=100, pushmpls(pathid=2, low=0), enqueue(1), outport=2

bucket 3: weight=100, pushmpls(pathid=3, low=0), enqueue(1), outport=3

group 1

*bucket 1: weight=50, pushmpls(pathid=2, low=1), enqueue(2), outport=2

*bucket 2: weight=50, pushmpls(pathid=3, low=1), enqueue(2), outport=3

bucket 3: weight=100, pushmpls(pathid=2, low=0), enqueue(1), outport=2

After s2-s4 link down

bucket 4: weight=100, pushmpls(pathid=3, low=0), enqueue(1), outport=3

* Kuijia
Flow table

Flow table

Flow tableFlow table

Group table

Group table

group 1

bucket 1: weight=100, pushmpls(pathid=1, low=0), enqueue(1), outport=1

bucket 2: weight=100, pushmpls(pathid=2, low=0), enqueue(1), outport=2

bucket 3: weight=100, pushmpls(pathid=3, low=0), enqueue(1), outport=3

group 1

*bucket 1: weight=50, pushmpls(pathid=2, low=1), enqueue(2), outport=2

bucket 3: weight=100, pushmpls(pathid=2, low=0), enqueue(1), outport=2

After s2-s4 link down

bucket 4: weight=100, pushmpls(pathid=3, low=0), enqueue(1), outport=3

Group table

Group table

*bucket 2: weight=50, pushmpls(pathid=3, low=1), enqueue(2), outport=3

Fig. 2. The design of flow table and group table of each switch in the simple topology.

and flow tables of four switches for the network used in Fig. 1.
The forwarding label can be MPLS, VLAN tags, etc.

Flows are hashed to different tunnels consistently (and ap-
plied different labels) when they arrive at the ingress switch for
simplicity. Thus splitting weights are configured as ranges of
the hashed values. For example in Fig. 3(a), the weights are 0.5,
0.3 and 0.2 for tunnels T1, T2 and T3. For simple rescaling,
its implementation is as follows. Suppose the tunnel T1 fails
as in the motivation example. The ingress switch rescales the
traffic to the remaining tunnels by removing the bucket in the
group entry that corresponds to the failed tunnel as shown in
Fig. 2.2 The entries in the blue table are issued after failures.
In addition, since T1 fails, the hash value ranges for T2 and
T3 also “rescale” accordingly, so that weights of T2 and T3
are now 0.6 and 0.4. As discussed already, this may cause
congestion after re-routing the victim traffic [9].

 01234567012345670123456701234567
 +-----------+-----------+-----------+-----------+
 | T1 | T2 | T3 |
 +-----------+-----------+-----------+-----------+
 | T2 low | T3 low| T2 | T3 |
 +-----------+-----------+-----------+-----------+

 01234567012345670123456701234567
 +-----------+-----------+-----------+-----------+
 | T1 | T2 | T3 |
 +-----------+-----------+-----------+-----------+
 | T2 | T3 |
 +-----------+-----------+-----------+-----------+

(a)

(b)

Fig. 3. The change of hash range after failure.

2Entries with * only exist in Kuijia, not in rescaling.

B. Kuijia

Here we explain the detailed design of Kuijia for SDN
based data center WANs. We focus on dealing with single link
failures, which are most common in production networks as
shown in Table I. Multiple link failures are rare and can be
handled by controller intervention on a need basis.

We propose Kuijia with rate rescaling to reduce the impact
of congestion after failures. Its design is simple and can be
implemented in Openflow switches. Suppose there are k tunnels
for traffic between a given source-destination pair, and one
tunnel fails. Kuijia keeps the original hash range, and separates
the hash range of the failed tunnel into k−1 parts according to
weights of the k−1 tunnels to form the new hash ranges. It also
marks the hash range of the failed tunnel to low priority in order
to enforce priority queueing. This way Kuijia can differentiate
the aboriginal traffic on the remaining k − 1 tunnels from the
victim traffic that is rescaled to them. For the same example in
Fig. 3(b), when T1 fails, its hash range is split into two parts
for T2 and T3 with weights to 0.3 and 0.2, respectively. One
can easily verify that the aboriginal flows on T2 and T3 are still
hashed to the same ranges and routed normally. Victim traffic
on T1 is now rescaled to T2 and T3 and tagged as low priority
in order not to influence the original flows.

Note that when one link fails, any intermediate switch may
potentially become congested due to rescaling. Thus it is
necessary for all switches to perform priority queueing for the
victim flows, not just the corresponding ingress switch. To do
that, there are two ways. The first one is to compute which
links will be congested after rescaling, and then we only need
to configure the corresponding flow entries at those switches
to realize priority queueing. Although this method uses fewer

flow entries, it is hard to achieve in reality because the ingress
switch has no information of all the traffic in the network, and
the controller has to compute which links will be congested
after failures actually happen, which defeats the purpose of
having a data plane failover mechanism.

Thus Kuijia uses a simple method that doubles the flow
entries in all switches for each tunnel. We have a normal
priority queue and a low priority queue at each switch. Each
queue has the same set of flow entries to route traffic. Traffic
with low priority tags is sent to the low priority queue as shown
in Fig. 4. This is simple to implement in the data plane and
can handle any link failures quickly.

Queue (0)

Queue (1)

Queue (2)

Normal traffic

Packets are always
dequeued from
highest priority
queue.

Rescaling traffic

Control message

Fig. 4. The switch queues in Kuijia.

For example, in Fig. 2, for normal flows to 10.0.2.0/24, they
match low=0, inport=1, pathid=3 in s3 and go to queue(1). The
corresponding entry, matching low=1, inport=1, pathid=3 will
go to queue(2) which is the low priority queue, and is used
when there are re-routed flows due to link failure, e.g. when
the s2-s4 link down. In the ingress switch s1, the group table
applies low priority tags to the victim flows (entries with *),
and direct the packets to the outport which is connected to the
next-hop switch.

Each intermediate switch of the tunnel matches packets on
priority, inport, and pathid. Victim flows are then routed to
queue(2) (re-routing flow, low priority tag=1) of outport while
aboriginal flows to queue(1).

Note that as TCP connection needs two-way communication,
the flow entries and group entries are also issued for two-
way. We use MPLS Label field to store our path ID (each
tunnel(path) has a unique path ID) and TC field to store our
low priority tag (0 means normal flow and 1 means re-route
flow).

IV. EVALUATION

We conduct comprehensive testbed experiments on Emulab
to assess the effectiveness of Kuijia in this section.

A. Setup

Testbed Topology. We adopt a small scale WAN topology for
Google’s inter-data center network reported in [7], which we
refer to as the Gscale topology. There are 12 switches and 19
links as illustrated in Fig. 5. We use a d430 node in Emulab
running OVS to emulate a WAN switch in Gscale. Each link
capacity is 1 Gbps. Each switch port has three queues: Queue
0 is for control messages; queue 1 is for normal flows; and
queue 2 is for rescaled flows. We test both TCP and UDP
traffic sources using iperf.

s2

s7

s5

s11

s10

s9

s12

s1 s4

s8s6s3

Fig. 5. The Gscale topology.

TE Implementation. Similar to prior work [6, 9], we assume
that there are 3 TE tunnels or paths between an ingress-egress
switch pair. We use edge-disjoint paths whenever possible. The
TE solution is obtained by solving a throughput maximization
program using CVX. The corresponding group tables and flow
tables are then configured by a RYU controller [2] at each
switch. Rate limiting is done by the Linux tc.

Instead of generating a large number of individual flows
between an ingress-egress switch pair, we simply launch 2
iperf flows on each TE tunnel and rescaling will re-route
them to the two remaining tunnels separately after a single
link failure. In total there are 6 iperf flows for an ingress-
egress switch pair. We determine the bandwidth of each iperf
flow according to the weights of the tunnels. For example, if
the TE result shows the bandwidth allocated to a switch pair
is 300Mbps, and weights for each tunnel are 0.5, 0.3 and 0.2,
the bandwidth of the two iperf flow on the first tunnel is
300*0.5*0.3/(0.3+0.2)=90Mbps and 60Mbps, respectively. We
use the DSCP field to carry the path ID in the packet header,
since Emulab uses VLAN internally to connect its machines.
We use the ECN bit as the priority tag. In environments when
ECN or DSCP are already used, we can use other fields in IP
options or MPLS for these purpose.

Now since we do not have many flows, rescaling is imple-
mented by controller changing the action of the flow entries for
the victim flows, so they are routed to the remaining tunnels.
For Kuijia, the controller also changes the priority tag and send
the victim flows to the low priority queue after a failure.
Traffic. We use five random ingress-egress switch pairs in each
experiment. We vary the demand of each switch pair from
0.8Gbps to 1.6Gbps in order to see Kuijia’s performance with
different extent of congestion. For each demand we repeat the
experiment three times and report the average.

B. Benefit of Kuijia

We first look at the benefit of Kuijia compared to rescaling.
Three types of flows are affected by link failures and rescaling.
The first is the victim flows that are routed through the failed
link. The second type is the directly affected flows, which are
routed through path segments that the victim flows are rescaled
to. The third type is the indirectly affected flows, which pass
through path segments that the directly affected flows use. Here
we focus on the latter two types of flows. The results of victim
flows are discussed in the next subsection.

0.8 1.0 1.2 1.4 1.6

Demand

2

1

0

1

2

3

4

5

6

7

T
h
ro

u
g
h
p
u
t

lo
ss

 (
%

)

Kuijia

Rescaling

Fig. 6. Throughput loss of directly affected TCP flows.

0.8 1.0 1.2 1.4 1.6

Demand

0.2

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro

u
g
h
p
u
t

lo
ss

 (
%

)

Kuijia

Rescaling

Fig. 7. Throughput loss of indirectly affected TCP flows.

For TCP flows, we evaluate the throughput loss after the
failure for both the directly and indirectly affected flows are
shown in Fig. 6 and Fig. 7. As the demand of each ingress-
egress switch pair increases, the average throughput loss in
terms of percentage for directly affected flows increases with
the simple rescaling. This is because as demand increases, more
links in the network may be fully utilized even before failure.
After rescaling, they become congested and all flows passing
these links suffer throughput loss. For Kuijia, as we re-route the
victim flows with low priority, they are the only flows suffering
packet loss and throughput degradation after failures. Thus even
when the demand is 1.6Gbps for each ingress-egress switch
pair, the average throughput loss of directly and indirectly
affected flows is little.

We also look at the convergence time of TCP after the
link failure, which measure how long it takes for all flows to
achieve stable throughput. Again due to the cascading effect
of rescaling, all flows suffer from packet loss and enter the
congestion avoidance phase. The convergence time is over 10
seconds when the demand exceeds link capacity as shown in
Table IV. Now with Kuijia, only victim flows need to back off,
and thus the convergence time is greatly reduced to less than
1 seconds in almost all cases. One can also observe that the
convergence time exhibits less variance with Kuijia compared
to rescaling, since the congestion levels of tunnels can be vastly
different with rescaling.

The benefit of Kuijia for UDP traffic is different. We use
packet loss rate to measure the performance of UDP flows.
The results are shown in Fig. 8 and Fig. 9. For directly affected

TABLE IV
COMPARISON OF AVERAGE TCP CONVERGENCE TIME (S)

Link Failure Link 2-3 Down Link 7-9 Down Link 10-11 Down
Demand 0.8Gbps

Rescaling 1 1 1
Kuijia < 1 < 1 < 1

Demand 1.0Gbps
Rescaling 3.75 4.50 1.75

Kuijia < 1 < 1 < 1
Demand 1.2Gbps

Rescaling 11.00 12.00 12.75
Kuijia < 1 < 1 < 1

Demand 1.4Gbps
Rescaling 10.50 16.00 12.25

Kuijia < 1 2.33 < 1
Demand 1.6Gbps

Rescaling 11.25 9.83 22.00
Kuijia 1.25 1.33 < 1

flows, packet loss rate with Kuijia is less than 2% in almost
all cases, implying that the impact is negligible. Rescaling, on
the other hand, results in much higher packet loss rates which
are also increasing as demand increases. For indirectly affected
flows, the variation of packet loss after link failure is almost
zero for both Kuijia and original rescaling.

0.8 1.0 1.2 1.4 1.6

Demand

0

2

4

6

8

10
P
a
ck

e
t

Lo
ss

 R
a
te

 (
%

)

Kuijia

Rescaling

Fig. 8. Packet loss rate of directly affected UDP flows.

0.8 1.0 1.2 1.4 1.6

Demand

0.10

0.05

0.00

0.05

0.10

P
a
ck

e
t

Lo
ss

 R
a
te

 (
%

)

Kuijia

Rescaling

Fig. 9. Packet loss rate of indirectly affected UDP flows.

C. Overhead

Victim flows perform worse in Kuijia compared to rescaling,
since they are the only flows that suffer throughput loss due to
failures. We now look at this overhead of Kuijia. The result

0.8 1.0 1.2 1.4 1.6

Demand

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t

lo
ss

 (
%

)

Kuijia

Rescaling

Fig. 10. The overhead of TCP victim flows.

0.8 1.0 1.2 1.4 1.6

Demand

0

10

20

30

40

50

P
a
ck

e
t

Lo
ss

 R
a
te

 (
%

)

Kuijia

Rescaling

Fig. 11. The overhead of UDP victim flows.

for both TCP and UDP traffic is shown in Fig. 10 and Fig. 11.
When demand of each ingress-egress switch pair increases, the
average throughput loss of TCP victim flows and average packet
loss rate of UDP flows also increases. We believe this is a
reasonable tradeoff to make, because in case of a link failure,
traffic that traverses through this link is inevitably affected,
especially when the demand exceeds link capacity in the first
place. On the other hand rescaling causes too much collateral
damage by making many other flows suffering from congestion,
which should be avoided.

V. RELATED WORK

Failures in SDN. There is much work to deal with failures
in SDN. [12] and [15] provide new abstractions to enable
developers to write fault-tolerant SDN applications. Some other
work relies on the local fast failover mechanism introduced in
OpenFlow to design new functions. Schiff et al. [13] propose
SmartSouth to provide a new data plane for Openflow switches
that can implement fault-tolerant mechanisms. Borokhovich et
al. [4] develop algorithms to compute failover tables. Kuijia is
different in that it focus on remedying the congestion due to
rescaling.
Failures in data center WANs. [14] modifies the rescaling
behaviour of ingress switch by pre-computing and configuring
forwarding rules based on the likelihood of different failure
cases to prevent rescaling-induced congestion after a data plane
fault. SWAN [7] develops a new technique that leverages a
small amount of scratch capacity on links to apply updates
in a provably congestion-free manner. FFC [9] is proposed to

proactively protect a network from congestion and packet loss
due to data and control plane faults. Our method is different as
we use priority queueing in the data plane, which is simple to
implement in practice.

VI. CONCLUSION

We develop Kuijia, a robust TE system for data center WANs
based on rate rescaling method to reduce the influenced flows
due to data plane faults by re-routing the flows from failure
tunnels to other healthy tunnels with low priority. This protects
the original traffic of those healthy tunnels from congestion and
packet loss, as the traffic from the failure tunnels will suffer
them. By evaluating our method in Emulab Gscale testbed we
implemented, the results show Kuijia works well for both TCP
and UDP traffic.

VII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable com-
ments on this paper. The work is supported in part by the Hong
Kong RGC ECS-21201714, GRF-11202315, and CRF-C7036-
15G.

REFERENCES

[1] Emulab. http://www.emulab.net/.
[2] RYU. https://github.com/osrg/ryu.
[3] Private conversation with Ming Zhang and Harry H. Liu, Microsoft

Research, March 2015.
[4] M. Borokhovich, L. Schiff, and S. Schmid. Provable Data Plane Connec-

tivity with Local Fast Failover: Introducing Openflow Graph Algorithms.
In Proc. ACM HotSDN, 2014.

[5] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: Scaling flow management for high-performance
networks. In Proc. ACM SIGCOMM, 2011.

[6] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. Achieving high utilization with software-driven WAN.
In Proc. ACM SIGCOMM, 2013.

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and
A. Vahdat. B4: Experience with a globally-deployed software defined
WAN. In Proc. ACM SIGCOMM, 2013.

[8] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila, M. Robin,
A. Siganporia, S. Stuart, and A. Vahdat. Bwe: Flexible, hierarchical
bandwidth allocation for wan distributed computing. In Proc. ACM
SIGCOMM, 2015.

[9] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter. Traffic
engineering with forward fault correction. In Proc. ACM SIGCOMM,
2014.

[10] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz.
zUpdate: Updating data center networks with zero loss. In Proc. ACM
SIGCOMM, 2013.

[11] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The design and implementation of open vswitch. In Proc. USENIX NSDI,
2015.

[12] M. Reitblatt, M. Canini, A. Guha, and N. Foster. FatTire: Declarative
Fault Tolerance for Software-defined Networks. In Proc. ACM HotSDN,
2013.

[13] L. Schiff, M. Borokhovich, and S. Schmid. Reclaiming the Brain: Useful
OpenFlow Functions in the Data Plane. In Proc. ACM HotNets, 2014.

[14] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford. Net-
work architecture for joint failure recovery and traffic engineering. In
Proc. ACM Sigmetrics, 2011.

[15] S. H. Yeganeh and Y. Ganjali. Beehive: Towards a Simple Abstraction for
Scalable Software-Defined Networking. In Proc. ACM HotNets, 2014.

http://www.emulab.net/
https://github.com/osrg/ryu

	Introduction
	Motivation
	Design
	Background
	Kuijia

	Evaluation
	Setup
	Benefit of Kuijia
	Overhead

	Related Work
	Conclusion
	Acknowledgements
	References

