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Abstract—The proliferation of edge devices has pushed com-
puting from the cloud to the data sources, and video analytics
is among the most promising applications of edge computing.
Running video analytics is compute- and latency-sensitive, as
video frames are analyzed by complex deep neural networks
(DNNs) which put severe pressure on resource-constrained edge
devices. To resolve the tension between inference latency and
resource cost, we present Polly, a cross-camera inference system
that enables co-located cameras with different but overlapping
fields of views (FoVs) to share inference results between one
another, thus eliminating the redundant inference work for
objects in the same physical area. Polly’s design solves two basic
challenges of cross-camera inference: how to identify overlapping
FoVs automatically, and how to share inference results accurately
across cameras. Evaluation on NVIDIA Jetson Nano with a real-
world traffic surveillance dataset shows that Polly reduces the
inference latency by up to 71.4% while achieving almost the
same detection accuracy with state-of-the-art systems.

I. INTRODUCTION

With the explosive development of deep neural networks
(DNNs) and extensive deployment of devices with cameras,
video analytics proliferates to support a wide spectrum of
services [16, 25, 30], including traffic monitoring [8], safety
surveillance [44], and anomaly detection [10]. These applica-
tions usually run on the edge for two reasons: (1) Unreliable
and limited upload bandwidth from edge to cloud makes video
transmission the bottleneck of the entire analytics pipeline,
and is detrimental to many latency-sensitive analytics tasks
[16, 38, 42]; (2) Videos often contain private information that
cannot or should not be exposed to the cloud [4, 38].

The tension between edge devices’ inherently constrained
resources and analytics tasks’ ever-growing demand for com-
pute is impeding the full potential of edge-based video
analytics. This tension exists and is exacerbating for three
reasons. First, DNN-based inference is inherently compute-
intensive, especially for object detection models with complex
convolutional layers [19, 26, 37]. Second, today’s cameras
are able to output 4K and even 8K videos which require
more processing capabilities [27, 39]. Lastly, the compute cost
also grows linearly with the number of cameras which has
been growing steadily. For example, when one camera cannot
cover the full view of a location such as road intersections,
restaurants, etc., usually multiple cameras are deployed around
the same spot to cover different perspectives [2, 25].

Much work has been done in trying to ease this tension
between constrained supply and growing demand for compute
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Fig. 1: An illustration of cross-camera inference for vehicle detection
at an intersection. Video footages are from the NVIDIA AI City
Challenge (AICC) [1]. Given inference results of camera 3 in (b), the
detected bounding boxes in the overlapping FoVs (blue) are shared
and mapped to camera 2 in (c). The DNN model only needs to run on
the unique patches (red) of camera 2. Results are merged to generate
the final output of camera 2 in (c).

resources. For example, Remix [27] partitions a frame into
non-uniform blocks according to historical object distribution
and adopts a cheaper DNN for blocks that contain fewer
objects. FlexPatch [43] uses a vehicle-tracking-aware patching
technique to reduce object detection frequency. Also, many
systems choose to judiciously offload part of workloads to the
cloud to relieve the burden at the edge while satisfying latency
requirement [14, 17, 17, 32, 50, 53].

Different than these prior approaches, we propose a new
and complementing angle to curb the resource demand and
improve the latency of video analytics. Our key insight is that
multiple cameras placed at the same point of location usually
have a (large) part of overlapping fields of views (FoVs), and
independent repeated inference on these parts of the video
frames should be avoided as much as possible. Fig. 1 shows
an intersection where four cameras are set up to monitor traffic
from all directions. Thus their FoVs naturally overlap: For
instance, Fig. 1(b) and 1(c) show snapshots of cameras 3 and
2, respectively, taken at the same time, where both capture
the two vehicles in the center of the frame. The blue zones in
Fig. 1(b) and (c) highlight the overlapping FoVs.

We design Polly, a new system that carries out cross-camera
inference by sharing the inference results of the overlapping
FoVs from the reference camera to the target camera, so
inference only needs to be done on much smaller images on the
target camera. Building such a system faces two fundamental
challenges: (1) how to identify the overlapping FoVs of a
camera pair automatically, and (2) how to share or transfer
the inference results across cameras effectively.

To cope with the first issue, Polly takes advantage of vehicle
Re-identification (ReID) algorithms in computer vision that
identify the same vehicle appearing in multiple cameras to
correlate the overlapping FoVs. Polly also builds a fine-grained
position mapping method based on multi-output regression
tree to accurately map bounding boxes between cameras. Then



in resolving the second challenge, for better accuracy perfor-
mance, we find that objects only partially in the overlapping
FoVs might result in false detection at the target camera when
being directly shared and should not be used. The correspond-
ing parts of these objects in the target camera’s frames, which
we call low-confidence patches, need to go through dedicated
inference along with the unique patches that contain objects
beyond the overlapping FoVs. Last, Polly merges the results
of these two separate pipelines by addressing erroneous cases
such as duplicated bounding boxes.

To summarize, our work makes the following contributions:
• We explore the overlapping FoVs of co-located cameras

as a new dimension to optimize edge-based video an-
alytics. It saves resources and accelerates inference by
directly mapping the detected objects from the reference
to the target camera instead of running the DNN model
on the overlapping FoVs redundantly.

• We build Polly, the first system that enables such cross-
camera inference. Polly recognizes and solves a number
of technical issues, such as robust fine-grained position
mapping between cameras, extracting and assembling
patches that do require dedicated inference, and merging
results of different pipelines gracefully.

• We implement Polly on a commodity edge device,
NVIDIA Jetson Nano. Evaluation on a real-world dataset
[1] shows that Polly improves the end-to-end latency by
up to 71.4% over state-of-the-art systems almost without
impairing accuracy.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the background of video
analytics on edge devices (§II-A). Then, we use a real-
world dataset to explain the overlapping fields of view across
cameras and quantitatively show how common they are in
practice in §II-B. We also empirically demonstrate the re-
lationship between model inference latency and input size.
These observations motivate our idea to exploit cross-camera
inference sharing as a new means to accelerate inference on
the constrained edge.

A. Video Analytics on Edge Devices

Nowadays, cameras are widely deployed for various pur-
poses, such as security surveillance [44], traffic monitoring [8],
anomaly detection [10], etc. Video analytics applications usu-
ally run on edge devices to analyze the video contents, since
operators may not want to share videos to the cloud for privacy
reasons [4, 38], and the wide-area bandwidth from edge to
cloud is also scarce [38, 42].

Due to cost and energy constraints, the computation power
of edge devices is limited [27, 38]. A large body of work [12,
14, 17, 26, 32, 50, 51, 53] strives to improve the efficiency of
edge-based video analytics.
Software Acceleration. Some work adopts software tech-
niques to improve the inference latency on edge devices.
For example, FlexPatch [43] uses a vehicle-tracking-aware
patching technique to reduce object detection frequency while

preserving accuracy. Liu et al. [32] design a system that
employs low-latency techniques and decouples the rendering
pipeline from the traditional vehicle tracking process while
using a fast-tracking method to maintain detection accuracy.
CICO [12] employs a context-aware image compression ap-
proach to achieve low latency.
Edge-Cloud Collaboration. Another line of work explores
partitioning the DNNs over the edge and cloud resources
to enable collaboration between them. CEVAS [17] builds a
serverless infrastructure to facilitate fine-grained partitioning
of DNNs and accelerate inference. ANS [50] uses online
learning to automatically learn the optimal DNN partitioning
on-the-fly.
Semantic Image Partitioning. In addition, some work con-
siders using semantic information to accelerate inference.
Elf [53] dispatches video frames to multiple servers for parallel
processing, and does it in a content-aware manner so frames
of the same objects are sent to the same server. Remix [27]
partitions a frame into multiple non-uniform blocks according
to historical object distribution and adopts different DNNs for
different blocks.

Different than these prior approaches, we propose a new
angle to reduce edge inference cost, by sharing inference
results between co-located cameras at the same location that
have different but overlapping fields of views (FoVs). In the
following we empirically quantify the degree of overlapping
with real-world traffic cameras in order to show that our idea
is feasible and promising.

B. Overlapping FoVs across Cameras

As shown before in §I, very often multiple cameras are used
to cover the same location and have overlapping FoVs. We
now quantify the degree of overlapping for two intersections
in our dataset, including the four cameras in the Intersection
1 in Fig. 1(a), and another four cameras in the Intersection 2.
The camera footages are from the NVIDIA AI City Challenge
(AICC) [1] dataset which covers these particular intersections.
We use each camera in turn as the reference, and obtain
the average ratio of overlapping FoVs with respect to the
remaining cameras as shown in Table. I. The overlapping
ratio ranges from 35.4% to 55.8% which shows the substantial
overlapping FoVs across the cameras.

Thus, instead of performing inference independently on all
cameras, a better idea is to do it only once on one camera,
and share the inference results with other cameras for the
overlapping FoVs. The non-overlapping parts of the frames
still need to be processed separately as before. This can greatly
reduce the amount of input data for inference and improve
latency.

In order to show the promising potential of our idea, we
conduct a simple experiment to measure inference latency
with varying input data sizes. We run the YOLOv5 models
[19] for object detection on a NVIDIA Jetson Nano GPU [5]
using the same AICC dataset [1]. The Low-resolution inputs
are obtained by bicubic downscaling from 1080p images.
The model information is shown in Table II. Note that we



Reference Camera Cam. 1 Cam. 2 Cam. 3 Cam. 4

Intersection 1 41.6% 35.4% 55.8% 47.4%

Intersection 2 36.7% 45.5% 39.8% 36.6%

TABLE I: The average overlapping ratio when different cameras are
used as the reference for the intersection 1 in Fig. 1(a) and another
intersection 2. The two intersections both have 4 cameras, and each
column represents a reference camera. The videos we use are from
NVIDIA AICC [1].

DNN YOLOv5n YOLOv5s YOLOv5m YOLOv5l YOLOv5x6

Param. (M) 1.9 7.2 21.2 46.5 140.7

Size (MB) 3.9 14.1 40.8 89.3 270.0

TABLE II: Different YOLOv5 models used.

choose YOLOv5x6, the largest variant in YOLOv5, as an
oracle to generate ground truth for calculating accuracy. Fig. 2
shows the results. We observe that as the frame size increases,
inference latency increases dramatically (notice the y-axis’s
log scale) for each model. Notably, compared to the 240p,
1080p images take 17× longer to obtain an inference result.
The result implies that significant latency savings can be
achieved when the total number of pixels going into the model
is reduced, which has also been observed in recent work
[27, 53]. Now one naturally wonders about accuracy loss as
a result of sharing inference results across cameras. As will
be shown in §V-B, with a good design, accuracy loss is very
small since objects in the overlapping FoVs are largely similar
in the first place.

III. SYSTEM DESIGN

To make cross-camera inference work, two fundamental
questions have to be addressed: (1) how to identify the
overlapping FoVs automatically, and (2) how to share or
transfer the inference results across cameras effectively, so that
the overall inference accuracy loss is minimal? To this end,
we now present the design of our system Polly.

A. System Overview

Fig. 3 illustrates Polly’s overall design. Polly works in
two phases. In the offline phase, it addresses the first design
question and finds an accurate FoV mapping between cameras.
This is done offline since traffic cameras are stationary, and
once profiled their overlapping FoVs can be continuously used
until the cameras are moved. The online phase addresses the
second design question and performs cross-camera inference
sharing on-the-fly at the edge. Note we assume that cameras
are synchronized in time, and inference sharing is done on a
per-frame basis across cameras.
Identifying Overlapping FoVs. We take advantage of ve-
hicle Re-identification (ReID) algorithms [28, 36, 40, 45] in
computer vision that identify the same vehicle appearing in
multiple cameras to find the overlapping FoVs (§III-B). The
ReID algorithm outputs bounding boxes of the same vehicle in
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Fig. 2: Impact of input size on inference latency using YOLOv5 on a
NVIDIA Jetson Nano GPU. PyTorch is used as the inference engine
with the AICC dataset [1]. We repeat one hundred runs for each
model and input size, and report the average.

frames from different cameras, which taken together can tell us
the overall overlapping FoVs of two cameras (e.g. blue areas in
Fig. 1). Polly further performs fine-grained position mapping
using regression methods trained over the ReID results, such
that a vehicle’s position in the target camera can be directly
obtained using its position in the reference camera in the online
phase. The obtained overlapping FoVs are used for other
auxiliary tasks, including background removal and reference
camera selection to optimize system performance.
Online Inference Sharing. In the online phase, given in-
ference results from a reference camera and knowledge of
overlapping FoVs, Polly outputs the corresponding bounding
boxes of the vehicles for the target camera. In the straight-
forward case when the reference results are given with high
confidence for sharing, they are directly mapped to the target
camera based on the fine-grained position mapping module in-
troduced before (§III-C). In case the reference results have low
confidence, Polly cannot use them directly. Instead, it obtains
their corresponding areas in target camera’s images (based on
position mapping with additional fine-tuning for robustness),
and crops the contents to produce the so-called patches. These
low-confidence patches, together with the unique patches that
correspond to non-overlapping and non-background areas of
the frame, are piled into a new image by the patch assembler
and then fed to the DNN model for inference (§III-C). Results
from these two pipelines are merged to give the complete
inference result of the target camera (§III-D).

B. Identifying Overlapping FoVs

We now present the design details of Polly’s offline phase
that automatically creates an association between overlapping
FoVs of different cameras.
Overlap Profiling. As discussed earlier, we utilize the
positions of the same vehicle in different cameras to profile
the overlapping FoVs and establish fine-grained mapping for
them. We leverage existing vehicle re-identification (ReID)
algorithms, which have been well-studied in computer vision
[28, 36, 40, 45]. Specifically, using time-synchronous footages
from cameras, ReID assigns an ID and a bounding box to every
vehicle in each frame. The same vehicle appearing in multiple
cameras is identified with the same ID. The ReID results of
each row has the following form, [frame id, object id, left,
top, width, height]. left and top are coordinates of the top-left
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Fig. 4: Example of overlap profiling

corner of the bounding box, along with the width and height
measured in pixels.

Polly then uses Algorithm 1 to find the overlapping FoVs.
It iterates ReID results of two synchronous frames from two
cameras. As shown in Fig. 4, the image is divided into W ×
H small grids. Vehicles identified as the same are marked
with bounding boxes of the same color. Take the vehicle in
the red bounding box as an example. Grids 1–3 and 16–20
are identified as overlapping, while grids like 4–8 and 21 are
filtered out to avoid ambiguity as only a small part of them
are occupied by the red bounding box, which is controled by
a threshold FT . Additionally, detailed positional information
of vehicles is recorded (lines 9 and 22) to achieve a fine-
grained mapping described in the next section. At the end, the
overlapping FoVs such as the blue zone in Fig. 1 is established.
Fine-grained Position Mapping. Based on the FoVs from
Algorithm 1, Polly can build a fine-grained position mapping
for effective inference sharing. Essentially, since the cameras
cover the same intersection, their perspectives are different 2-D
projections of the same 3-D physical scene, and there clearly
exists a stationary transformation between any given pair of
these 2-D projections. We plot some trajectories of randomly
selected vehicles from cameras 3 and 4, as shown in Fig. 5. We
can see that vehicles with similar trajectories in one camera
appear in the other one with also very similar trajectories.

Since we do not know cameras’ precise location coordinates
and angles, we resort to machine learning to learn this transfor-
mation or mapping using positional data S we have. The input
and output are both a triplet, i.e. [x, y, l] in the target camera
as input, and [x̃, ỹ, l̃] in the reference camera as output. Here x
and y represent the coordinates of a vehicle’s centroid, and l is

Algorithm 1: Overlapping FoVs Identification
Input :
- RA, RB : ReID results of cameras A and B.
- FT : The filtering threshold.
- K: Size of each grid an image is divided into.
Output:
- OA, OB : The overlapping FoVs of cameras A and B.
- S: Coordinates of the centroids of the same vehicle and average
side lengths of their bounding boxes.

1 Function overlap_profiling(RA, RB , FT ,K):
2 for rA in RA and rB in RB do
3 for rowA in rA do
4 centroid = [ ];
5 obj id ← get vehicle ID from rowA;
6 if obj id not in rB then continue ;
7 else
8 select rowB in rB where vehicle ID = obj id

9 centroid.extend([x, y, l]);
10 box list ← split bounding box in rowA according to

the grid;
11 for box in box list do
12 if (area of box/K) > FT then
13 convert box to grid;
14 if grid not in OA then
15 insert grid into OA;

16 box list ← split bounding box in rowB according to
the grid;

17 for box in box list do
18 if (area of box/K) > FT then
19 convert box to grid;
20 if grid not in OB then
21 insert grid into OB ;

22 centroid.extend([x̃, ỹ, l̃]);
23 S.append(centroid);

24 return OA, OB , S;

Method R2 Training Time (s) Inference Time (ms)
MLP 0.950 631 0.38

Multi-output Regression Tree 0.996 5 0.27

TABLE III: Performance of different mapping methods

the average side length of the bounding box. The reason why
we do not directly use the width and length is that a vehicle’s
shape varies, making it difficult to effectively map. Thus we
simplify it by assuming the bounding box is a just square.
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Fig. 5: Trajectories of randomly selected vehicles from cameras
3 (left) and 4 (right). Dots with the same color represent the
centroids of the same vihicle.

(a) Before (b) After

Fig. 6: Effect of applying data augmentation. Red boxes are the
inferred results by position mapping.

For the ML method, we compare a black-box approach with
a multilayer perceptron (MLP) [18], and a white-box approach
with a multi-output regression tree [34]. Here we use a MLP
with three fully connected layers (with sizes of 64-64-3) and
Relu activation functions. The results are shown in Table. III,
we can see that regression tree works better in our case, with
higher accuracy, and faster training and inference time. Thus,
we adopt it as Polly’s default mapping approach.

Additionally, when training the regressor, we find that the
number of positional samples S are limited for a robust model,
as it is impractical to collect all possible positions. So we
apply data augmentation to enrich the training samples and
enhance its accuracy. The critical insight that motivates us is
that traffic movement commonly follows particular trajectory
as depicted in Fig. 5. The more samples we collect, the more
robust the regressor is. Thus, under limited training samples,
Polly augments them by adding minor random noise to the
triplet, so that the generated dots generally follow the original
trajectory. Fig. 6 illustrates the benefits of data augmentation.
Background Removal. As shown in Fig. 1, each camera’s
view has three parts: overlapping FoVs, unique patches, and
background areas, such as grass fields, bushes and trees, etc.
Running vehicle detection on the background areas where ve-
hicles do not exist at all is a waste of resource. Since cameras
are stationary and the background area seldom changes, we
manually identify it for each camera offline and remove it
online. Automatic background removal can be explored if this
assumption does not hold well in other scenarios.
Reference Camera Selection. We also need to decide which
camera to serve as the reference camera. Here we adopt a
simple method, that is, the camera that has the largest average
overlapping FoVs with the remaining ones is selected as the
reference camera. We find, as will be shown in §V-C, this
method achieves the lowest latency, while being simple and
easy to implement.

C. Online Inference Sharing

With everything we have thus far, in the online phase,
directly mapping the overlapping FoVs from the reference
camera to the target camera can still lead to unsatisfactory
results due to the low quality of shared inference result.
One main cause is the perspective effect [52]. As shown
in Fig. 7, two cameras have overlapping FoVs. Because of
the perspective effect, objects closer to the camera appear
larger in the image. Although the truck is not physically in the

overlapping area, it still appears in part of the overlapping FoV
in the left camera, whereas it is completely outside the right
camera’s view. In this case, sharing inference would identify
a truck in the right camera which is clearly wrong.

Intuitively, when some parts of the reference camera’s frame
has low sharing confidence, it is no longer suitable to apply
fine-grained position mapping to obtain the inference result for
the target camera. Our solution is then to just run the DNN
model on the corresponding parts of the frame from the target
camera. To do this, we first need to identify the low-confidence
parts of the reference camera’s frame.
Patch Extractor. We design the patch extractor to do this
precisely. Specifically, the detected bounding boxes in the
overlapping FoVs are classified as high- or low-confidence.
The high-confidence ones are those completely in the over-
lapping FoVs while low-confidence ones are only partially in
the FoVs. Leveraging the regression tree trained in the offline
phase, low-confidence boxes are mapped to patches (with
additional margins) in the target camera for further inference,
while high-confidence ones are directly shared.

Besides low-confidence patches, the target camera’s unique
FoVs (e.g. red parts in Fig. 1) are also extracted as small
rectangle patches for subsequent processing as shown in Fig. 3.
Patch Assembler. Both the low-confidence and unique patches
need to be processed by the DNN for object detection, and
running the model on each patch individually is inefficient as a
small patch cannot efficiently utilize the GPU cores. Thus it is
vital to tile these patches into one image without overlapping.

The goal of the patch assembler is then to minimize the size
of the tiled rectangle so as to reduce inference latency (e.g.
1888ms for 1920×1080 full frame, 265ms for a 640×360 tiled
rectangle as shown in §II-B). The problem can be treated as a
variant of bin packing problem where items of varying sizes
are to be packed into one 2-D bin such that its total size is
minimized [48]. The problem is NP-hard and difficult to solve
[21]. To simplify it, we fix the width W and orientation of
the bin, where W is the width of the largest patch. Polly then
adopts a simple but effective guillotine bin packing algorithm
[48] to solve the problem.

To further improve latency, we observe that the object size
is roughly linearly relative to the Y coordinate of the object’s
centroid as shown in Fig. 8. This is an intrinsic characteristic
of camera view: objects closer to the camera appear larger
[27]. Thus before tiling, we down-sample patches by factor f
with Y coordinates greater than a threshold YT . This has very
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Fig. 8: Y-axis value of object centroid versus object size.
Fig. 9: An example of the tiled
rectangle with detection results.

minor impact on accuracy because large objects can still be
detected correctly even if they are down-sampled to a smaller
rectangle, which we will verify in §V-D.

Putting everything together, Fig. 9 depicts an example of the
tiled rectangle from the patch extrator. Notice the car on the
right-bottom corner is down-sampled and can still be detected.

D. Accurate Result Merging

As the last step, Polly needs to combine the inference
results from the two pipelines, inference sharing from the
reference camera, and direct inference of the titled image.
However, directly merging the results does not work due to
duplicated bounding boxes. Specifically, as demonstrated in
Fig. 10, there are two cases of duplicates: (1) The bounding
boxes are connected on one side, as in Fig. 10(a), when the
vehicle is separated into different patches; (2) The boxes are
overlapping, such as in Fig. 10(c), as one vehicle may be
detected in both the low-confidence patch and unique patch
when it is in both areas.

For the first case, we design a method called Connected
Component Merging (CCM) to effectively join two connected
boxes into one. While the details are described in Algorithm 2,
we illustrate the basic idea using Fig. 11. First, all boxes are
projected to the two axes. CCM checks if the projections on
one axis are connected (lines 7&14), and the projections on the
other axis overlap (lines 11&18). When both are true, CCM
merges the two connected boxes such that the merged box is
minimized (lines 21-26). We use two parameters MT and NT

to control the threshold of connection and overlap gracefully.
Fig. 10(b) shows an example of the effect of CCM. For the
second case, we design a variant of the non-maximum suppres-
sion (NMS) algorithm [35] to remove redundant predictions
by calculating the ratio of intersection against both of the two
boxes. If either one is greater than a threshold PT , the two
boxes will also be merged as lines 21-26 in Algorithm 2.

To quickly summarize, the high-level idea here is to com-
bine the predicted bounding boxes and remove redundancy,
thus improving the quality of the final result. This is an
indispensible step and logically similar to how most object
detection models internally merge results (e.g. [19, 37, 41]).

IV. IMPLEMENTATION

We implement Polly with ∼2K lines of Python on NVIDIA
Jetson Nano Kit, as shown in Fig. 12. Polly uses Pytorch as
the inference engine.

Algorithm 2: Connected Component Merging (CCM)
Input :
- box1, box2: coordinates of bounding box 1 and boudning box 2.
- MT , NT : the threshold of connection and overlap, respectively.
Output:
- merged box: the merged bounding box.

1 Function CCM(box1, box2):
2 x1, y1, w1, h1 ← the coordinates of top-left corner, and the

width and height of box1;
3 x2, y2, w2, h2 ← the coordinates of top-left corner, and the

width and height of box2;
4 flag ← False;
5 Dx, Dy ← distances of centroids along the x- and y-axis;
6 /*check if the projections on the x-axis connect*/
7 if (w1 +w2)/2−MT <= Dx <= (w1 +w2)/2+MT then
8 a ← max (y1, y2);
9 b ← min (y1 + h1, y2 + h2);

10 /*check if the projections on the y-axis overlap*/
11 if (b− a)/h1 >= NT or (b− a)/h2 >= NT then
12 flag ← True

13 /*check if the projections on the y-axis connect*/
14 else if (h1 + h2)/2−MT <= Dy <= (h1 + h2)/2 +MT

then
15 a ← max (x1, x2);
16 b ← min (x1 + w1, x2 + w2);
17 /*check if the projections on the x-axis overlap*/
18 if (b− a)/w1 >= NT or (b− a)/w2 >= NT then
19 flag ← True

20 /*merge two boxes*/
21 if flag == True then
22 x̂ = min (x1, x2);
23 ŷ = min (y1, y2);
24 ŵ = max (x1 + w1, x2 + w2) - x̂;
25 ĥ = max (y1 + h1, y2 + h2) - ŷ;
26 merged box = [x̂, ŷ, ŵ, ĥ];

27 return merged box;

DNN Model. We adopt YOLOv5 [19], one of the state-of-
the-art object detection techniques, as Polly’s default model.
Note that the design of Polly is model-agnostic and any object
detection model can be used, as we will demonstrate this
property in §V-F. Automatic resizing is disabled for the DNN
to maintain the complete visual information.
Parameter Setting. The multi-output regression tree for fine-
grained position mapping is implemented and trained with
Scikit-learn [6]. We use mean squared error (MSE) as the
training criterion; the maximum depth of all trees is set to
500. The filtering threshold FT in the overlap profiling is set to
0.88. The down-sampling threshold YT and the down-sampling
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Fig. 10: Effect of result merging. The detection accuracy of the red boxes is improved after applying result merging.

x

y

Fig. 11: Illustration of CCM. The green
and blue boxes are merged after CCM.

Fig. 12: NVIDIA
Jetson Nano Kit.

factor f are 432 and 4 empirically. The threshold of connecting
bounding boxes and overlapping, i.e. MT and NT , are set to
5 pixels and 0.8 respectively; PT is also 0.8.

V. EVALUATION

We now experimentally evaluate Polly in various aspects by
answering the following questions:

• How well does Polly work overall in terms of latency and
accuracy? (§V-B)

• How well does Polly work using different reference
cameras? (§V-C)

• How much does each key design choice of Polly con-
tribute to the overall performance gain? (§V-D)

• How efficiently does Polly utilize the compute resource?
(§V-E)

• How robust is Polly in terms of detection models beyond
YOLOv5? (§V-F)

A. Experimental Settings

Testbed. We run our experiments on Jetson Nano[5], which
is a commonly used edge device equipped with one 128-core
NVIDIA Maxwell GPU, one Quad-core ARM A57 CPU, and
4GB memory. It runs Ubuntu 18.04 LTS with kernel 4.15.0.
Dataset. We evaluate Polly using a real-world multi-camera
traffic dataset from the AICC [1]. We use the video footages of
the four cameras from the same intersection as shown in Fig. 1
to evaluate Polly. The original video length ranges from 195
to 211 seconds. We carefully align them to be synchronized
within a time period of 180 seconds. We use the first 60-second
video clips for offline profiling, and the last 120-second videos
to evaluate our system. All four cameras have a frame rate of
10 FPS and a resolution of 1920×1080.
Compared Schemes. We compare Polly against the following
schemes:

• Overlapping-Agnostic (OA): This is the current approach
that runs the detection model on each camera independently,
without exploiting the overlapping FoVs.

• Naive-Merging (NM): This realizes inference sharing by di-
rectly combining the shared inference results of overlapping
FoVs from the reference camera with the detection results
of unique FoVs.

• Remix-Mimic (RM). We also compare to Remix [27], a
state-of-the-art object detection framework on edge devices.
Remix runs cheaper DNN models on portions of the frame
that have fewer objects. Due to the lack of open-source
code, we reproduce their work faithfully and named as
Remix-Mimic (RM). We emphasize that Polly is in fact
complementary to Remix and other prior work, and they
can work together to achieve even better results.

Detection Models. We use four YOLOv5 variants with dif-
ferent sizes [19] as detailed in Table II. Note that RM uses
YOLOv5l as the large model when objects are small and
dense, and YOLOv5n as the small one when objects are large
and sparse.
Metrics. We use the average end-to-end latency and accuracy
as the main performance metrics. The end-to-end latency is
defined by the time between the input of image and the output
of detection results. The AICC dataset [1] does not provide
labels for object detection, and manually labeling all the video
frames is a daunting task. Thus we choose YOLOv5x6, the
largest YOLOv5 model, as the oracle to generate the pseudo-
labels as ground truth, which is consistent with previous
works [20, 27, 30]. Detection accuracy is measured by the
commonly used F1 score, i.e. the harmonic mean of precision
and recall [16, 47, 49], where 0 and 1 represent the lowest
and highest accuracy, respectively.

B. Overall Performance

We first look at the overall performance benefits of Polly.
Fig. 13 shows the results using the four YOLOv5 models. Note
that because RM uses both YOLOv5n and YOLOv5l, we plot
its bar under YOLOv5l.

As shown in Fig. 13(a), Polly’s overall latency reductions
range from 55.00% to 71.43% compared against OA. For
RM, Polly with YOLOv5l reduces latency by 17.30%, and
the reduction even reaches 70.81% with a smaller model
YOLOv5m. The latency improvement of Polly attributes to
three main reasons: (i) inference sharing significantly reduces
the input size on which the detector needs to run; (ii) Polly’s
background removal component filters out pixels that never
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Fig. 13: The overall performance comparison of Polly and compared
schemes using the YOLOv5 models. Note that because RM uses both
YOLOv5n and YOLOv5l, we plot its bar under YOLOv5l.

(a) Latency (b) Accuracy

Fig. 14: The performance of Polly with different reference cameras.
Note that the latency and accuracy results are the averages of
corresponding target cameras.

contain objects; (iii) the down-sampling technique for large
objects further brings more latency reduction gains.

At the same time, Fig. 13(b) shows that Polly’s accuracy
is almost on par with OA across models, with at most 3.7%
loss. Note that the accuracy of OA is the upper bound of
Polly. The accuracy loss is only 0.9% for the YOLOv5l model.
Moreover, combining the results of Figs. 13(a) and 13(b), we
observe that Polly can use a larger model to achieve better
accuracy than OA with a smaller model, while still being faster
than OA. For example, Polly with YOLOv5s achieves 9.28%
accuracy improvement and reduces 32.43% latency than OA
with YOLOv5n.

Besides, both Polly and OA work better than NM in ac-
curacy. This is because NM directly combines the shared
inference results without careful patch extraction and consol-
idated result merging. Polly with YOLOv5m works similarly
as RM, and slightly better than RM if it uses YOLOv5l. This
is expected because RM uses the large YOLOv5l for the
indiscernible patches and YOLOv5n for others.

C. Impact of Reference Camera Selection

We then investigate how the choice of reference camera
affects performance of Polly. Fig. 14 presents the latency and
accuracy that Polly achieves with different reference cameras.
We only show the results using YOLOv5s here for brevity.

We observe that reference camera has a greater impact on
latency compared to accuracy. The latency bias of different

(a) Latency (b) Accuracy (c) Input size ratio

Fig. 15: The latency and accuracy breakdown and corresponding
average input size ratio across three key design components. The
input size ratio indicates the ratio of the actual input frame size to the
original frame size. Note that each component is added incrementally
(e.g. +DS=NM+PE+RM+DS).

Polly Component
Patch

Extractor
Patch

Assembler
Running
Detector

Result
Merging

Avg. Exe. Time (ms) 4.38 3.54 168.11 11.32

TABLE IV: The average execution time of Polly’s each component.

references cameras, defined as (lmax − lmin)/lmax, is 21.88%,
while the accuracy bias is only 5.25% and accuracy perfor-
mance is consistent. This implies that inference sharing is
in general effective with different cameras selected as the
reference, and for better performance one should use latency
as the main criterion for reference selection. Since latency
is directly related to the total area of overlapping FoVs,
our method described in §III-B that relies on this to select
reference camera works well. In this case, Polly picks camera
3, which does deliver the lowest latency.

D. Deep Dive

Next, we conduct an ablation study to investigate the impact
of the key design components in Polly. We incrementally add
each component to NM, namely Patch Extractor (PE), Result
Merging (RM), and Down-Sampling (DS). Note that Patch
Assembler (PA) is already integrated with NM. The results
are shown in Fig. 15.

We see that PE brings considerable accuracy gain with
11% latency increment. This is because PE extracts the low-
confidence patches that might cause false results when being
directly shared, and run the detector on them to get more
accurate results. RM further improves the accuracy while
incurring little latency. Besides, when DS is added, latency is
improved by 48.34% without accuracy loss. The reason is that
DS down-samples areas with large objects and significantly
reduces the input size by 61.11% on average.
Overheads. Further, we measure the execution time of each
component in Polly. We repeat the runs for 50 times and report
the average in Table IV. It is expected that the DNN detector
takes the longest, accounting for 89.73% of the end-to-end la-
tency. PE and RM take only 4.38ms and 11.32ms, respectively,
which are negligible compared to the total latency. Notably,
the patch assembler has only 3.54ms latency, which proves the
efficiency of Polly’s bin packing algorithm.



Fig. 16: The average energy consumption comparison between Polly
and OA. The object detection model is YOLOv5s.

Scheme Latency (ms) Accuracy Input Size Ratio (%)

Polly 670 0.91 12.40

OA 2220 0.93 100

TABLE V: The latency, accuracy, and input size ratio comparisons
of Polly and OA. Both Polly and OA use EfficientDet-D0 [41].

E. Energy Efficiency

Utilizing energy efficiently is critical to the applications
run on the constrained edge nodes [13]. We use the built-in
Tegrastats Utility [7] of Jetson Nano to monitor the energy
consumption over time. The monitoring period is 60s and
sampling rate is 10Hz. We report the average of the monitoring
period. The results of Polly and OA using YOLOv5s are shown
in Fig. 16. Polly’s GPU power is only 13.77% that of OA, due
to inference sharing that greatly avoids redundant inference.
Polly results in slightly more CPU consumption than OA,
because of its various extra processing on the CPU. Overall,
Polly saves 61.73% power against OA.

F. Robustness to Detection Model

To verify Polly’s robustness to object detection models,
we test Polly with another classic detection model Efficient-
Det [41]. EfficientDet [41] has different feature extractor and
detection architecture compared to YOLOv5. Table V shows
the results. We can see that, compared to OA, Polly’s accuracy
degradation is only 2.15%, while cutting latency from 2220ms
to 670ms, i.e. a 69.82% saving for each frame. This indicates
that Polly’s gains are consistent when using various object
detection models.

VI. RELATED WORK

A. Cross-Camera Video Analytics

Previous work has considered optimizing cross-camera
video analytics from different perspectives. Distream [46] dy-
namically balances the workload across cameras to fully utilize
compute resources and maximize throughput. Chamelon [26]
leverages the scene similarities to guide the best configuration
search of spatially-related cameras, thus amortizing the profil-
ing cost. Spatula [25] applies the spatial-temporal correlations
to prune the search space of a query identity.

The closest work to Polly is CrossRoI [20]. Though both
leverage the overlapping FoVs, they are different in three
aspects. First, Polly focuses on enabling cross-camera infer-
ence sharing while CrossRoI aims at removing redundancy
to reduce the communication cost to the cloud. Second,
CrossRoI is only optimized for unique vehicle detection and

it cannot detect the same vehicle appearing in other cameras,
while Polly can output the complete inference results of each
camera. Third, CrossRoI only identifies the coarse-grained
overlapping FoVs across cameras. In contrast, Polly gains
deeper knowledge of the overlapping FoVs and builds a fine-
grained position mapping model to achieve effective sharing of
detection results. In fact, Polly and CrossRoI are complemen-
tary and can be combined together for further improvements.

B. On-Device Inference Acceleration
A large body of work has been proposed to accelerate DNN

inference on edge nodes. The first line of work is to compress
the DNN model through knowledge distillation [23, 33],
pruning [22, 31] or quantization [11, 15]. The second category
is hardware-based acceleration [9, 24, 29] that optimizes DNN
execution based on hardware architecture. The last category is
software-based optimization. For example, Glimpse [14] uses
a local tracking approach based on light-weight optical flow
calculation to fastly detect objects; and many other efforts
exploit task-specific optimization [27, 32, 38, 43, 44]. Polly
belongs to the last category and is orthogonal to the above
work.

VII. DISCUSSION

A. Generalization to Other Analytics Tasks
Although Polly focuses on object detection, its main idea

of leveraging overlaps to reduce inference burden of cameras
is still applicable to other tasks on edge devices in the cross-
camera scenario. For example, it can be extended to semantic
segmentation and face recognition. Task- or domain-specific
design for the pipeline is needed to maximize its benefit.

B. Batch Execution
With the continuing development of edge devices, more

advanced on-board GPUs are expected to accelerate analytics
tasks [30]. Some recent smart camera has an NVIDIA TX2
GPU and 32GB onboard memory [3]. Given this trend, in-
gesting one frame at a time may not fully utilize the hardware
resources. Thus, we consider batching the frames to further
boost inference speed. One possible solution is to tile all
patches into a fixed-size frame and then feed in batch, while it
needs careful tuning without impairing the latency. We leave
batching as future work.

VIII. CONCLUSION

Current video analytics systems run DNN models on each
camera independently. In this paper, we argue that repeatably
detecting objects that appear in the overlapping FoVs of co-
located cameras is clearly a waste of resources for wimpy
edge devices. Thus, we present Polly, a cross-camera infer-
ence system that enables cameras with overlapping FoVs to
share inference results between each other, thus dramatically
reducing latency while preserving competitive accuracy. Our
evaluation results with a prototype running on NVIDIA Jetson
Nano show that Polly achieves almost the same detection
accuracy with state-of-the-art detection systems while saving
up to 71.4% latency and 61.7% computation power.
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